
CS333 - Problem Set 4

1. Consider the 2-qubit state |ψ〉 = 1√
2
|01〉AB− 1√

2
|10〉AB. This state has some strange properties

- in particular, as you’ll show in this problem, the two qubits are perfectly anticorrelated.
It’s behavior is so strange, it caused Einstein to believe that quantum mechanics couldn’t
possibly completely describe reality.

(a) Suppose Alice and Bob each measure their qubit in the same basis. That is, Alice
and Bob both each apply the measurement M(η, χ) = {|φ0(η, χ)〉, |φ1(η, χ)〉}, where
|φ0(η, χ)〉 = cos η|0〉 + eiχ sin η|1〉 and |φ1(η, χ)〉 = − sin η|0〉 + eiχ cos η|1〉. Show that
if Alice gets outcome |φ0(η, χ)〉, Bob will get outcome |φ1(η, χ)〉, while if Alice gets
outcome |φ1(η, χ)〉, Bob will get outcome |φ0(η, χ)〉. M(η, χ) is “generic” in that we can
make M(η, χ) represent any possible single qubit measurement by our choice of χ and
η. (η is “eta,” χ is “chi.”)

(b) What is the overall probability that Alice gets outcome |φ0(η, χ)〉? What is the proba-
bility that she gets |φ1(η, χ)〉?

(c) This anticorrelation is strange because of the following thought experiment. Suppose
Alice took her qubit to the moon, and Bob stayed on Earth. Now Alice performs her
measurement first, and suppose she gets outcome |φ0(η, χ)〉. Then, even if Bob performs
his measurement before any lightspeed communication can have happened between Alice
and Bob, Bob’s qubit somehow knows to choose the opposite outcome. This will happen
no matter which values of η and χ Alice and Bob choose. People thought that this might
enable faster-than-light communication, but explain why Part (b) of this question rules
out faster-than-light communication.

(d) We also can have classical (non-quantum) bits that are probabilistically anti-correlated.
Consider the following situation. I put a red sock in one box and a blue sock in another
box, and I give one box to Alice and one box to Bob, without telling them which box
contains which sock. Once Alice opens her box and sees a blue sock, she immediately
knows that Bob’s box contains a red sock. Why is the quantum situation stranger than
this classical situation?

2. Alice and Bob are playing a game where the referee sends them each a qubit that is part of
a 2-qubit state. The referee promises that the 2-qubit state is one of two options: |ψ0〉AB
or |ψ1〉AB, but doesn’t tell them which. Alice and Bob’s goal is to decide which state they
were given. In order to do this, they can each make a local measurement on their part of
the state (i.e. they can make a quantum measurement on their individual qubit). After the
measurement, they can communicate classically (for example, have a conversation on the
phone), discuss their outcomes, and try to decide if the state is |ψ0〉AB or |ψ1〉AB. For each
of the following games, either give a strategy such that Alice and Bob can always win, or
explain why they will always lose with some probability.
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(a)

|ψ0〉AB =
1√
2

(|00〉AB + |11〉AB)

|ψ1〉AB =
1√
2

(|01〉AB + |10〉AB) (1)

(b)

|ψ0〉AB =
1√
2

(|00〉AB + |11〉AB)

|ψ1〉AB = |00〉AB (2)

(c)

|ψ0〉AB =
1√
2

(|00〉AB + |11〉AB)

|ψ1〉AB =
1√
2

(|00〉AB − |11〉AB) (3)

3. [Moved to next week’s pset]

Consider the interferometer in the figure above.

(a) What will be the polarization of the photon that exits the interferometer, and will it
exit downwards or rightwards (or both)? Note that a 180◦ lens turns |0〉 → −|0〉

(b) In Problem Set 2, no. 6, you showed that if you multiply a state by −1, it is not
physically different from a state that is not multiplied by −1. (Note that −1 = eiπ.)
However, in part (a) of this problem, we see that multiplying by −1 does change the
physical outcome relative to the case with no lens in the interferometer. (What happens
with no lens?) What is different here from PS3 no. 4?

4. Pick either (a) or (b) (or both!) to answer. (a) is likely of more interest to those who like
physics, and (b) is likely of more interest to those who like computer science.
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(a) Experimental demonstrations of the CHSH game are used not just to show off how cool
quantum mechanics is, but also to prove that quantum mechanics is the true theory
that describes reality. If you can win the CHSH game with high enough probability,
it rules out alternative theories of reality. (For example, “hidden variable theories”
that claim that when qubits are entangled, they somehow decide ahead of time which
outcomes will occur when some measurement is made in the future.) However, if the
CHSH experiments are not performed in just the right way, there are “loopholes” that
would allow the results to be explained by factors other than quantum mechanics. Read
these two articles Good Bell Test, Bell Test with Starlight, and answer the questions
below. (Bell Test is another name for the CHSH Game. The “test” is whether you can
win with high enough probability. Note, in the physical implementation of most of these
tests, Alice and Bob try to win using a pair of entangled photons that are created at the
mid-point between their locations, and then one half of the entangled photon is sent to
each of Alice and Bob. When they talk about “measurement settings” they are referring
to the questions the referee sends to each of Alice and Bob.):

i. Describe the three loopholes in your own words, and describe why each loophole
could allow some other factor (other than quantum mechanics) to explain why Alice
and Bob win with higher than expected probability, and what experimentalists try
to do to over come each loophole.

ii. Please explain why the Detection and Locality Loopholes tend to be hard to close
at the same time.

(b) Of of the most important building blocks for creating secure cryptography is the ability
to create truly random numbers. For example, our everyday computers don’t generate
truly random numbers. Instead, when you generate a random number using e.g. python
or java, the program takes a seed number, like the exact time, and applies a complicated
function to turn the seed into number that looks random. However, if an adversary
knew about what time you generated your random number, they would have some idea
of the seed and hence a pretty good guess as to what the random number is. If you were
trying to use that random number to create a secret key, the adversary might then be
able to learn your message. Or maybe your adversary has hidden a program inside your
computer which is called every time you try to generate a random number, and which
generates a number that looks random to you, but which is actually a number of the
adversaries choosing. Then your secret message would be really insecure.

i. For applications where your randomness has to be really random, but not necessar-
ily secret, one way around this problem is to use noise generated by nature. For
example, how is randomness generated at Random.org? If you are extremely para-
noid about whether your numbers are truly random, versus being chosen by some
adversary, why might this not convince you?

ii. Read this American Scientist piece by Scott Aaronson on generating true random-
ness from the CHSH game. (You can skip the sections “Refuting Determinism” and
“Infinite Expansion” if you want.)

A. Explain why it is so important that the referee’s questions be random in order
to generate randomness from the CHSH game. (How could the players cheat to
create numbers that look random but which are really not?)
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https://www.forbes.com/sites/chadorzel/2015/08/27/new-experiment-closes-quantum-loopholes-confirms-spookiness/#31c167555727
https://www.forbes.com/sites/chadorzel/2017/02/08/quantum-loopholes-and-the-problem-of-free-will/#19f072e3ab8c
https://www.random.org/
https://www.americanscientist.org/article/quantum-randomness


B. In your own words, (and using our notation from class rather than from the
article) explain the basic idea of how to do randomness expansion with the
CHSH game to do randomness expansion.
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