
CS333 - Problem Set 3

1. Now that we have a mathematical (linear algebraic) description of quantum states and mea-
surements, we can reinterpret our cryptographic scenarios using these mathematical descrip-
tions. Please use ket/bra notation to describe the following scenarios. If applicable, calculate
the probability of different possible outcomes:

• Alice prepares a horizontally polarized photon and sends to Bob.

• Eve intercepts the photon and has it pass through a vertically polarized filter before
trying to detect the photon. If she detects a photon, she prepares a vertically polarized
photon to send to Bob, and otherwise, she sends Bob a horizontally polarized photon.
(Calculate the probability of each outcome occuring using our mathematical tools.)

• Bob measures the photon he received from Eve by putting a right diagonally polarized
filter in front of his photon detector. What outcomes does he get, and with what
probability?

2. Is the following a valid qubit measurement? Why or why not? (Try to do the calculation(s)
only using standard basis bra/kets for practice.)
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3. Let M = {|φ0〉, |φ1〉} be an orthonormal basis representing a qubit measurement, and let |ψ〉
be a vector representing a qubit quantum state. For this problem, you may want to refer to
the Math Practice worksheet for properties of orthonormal bases.

(a) Since |ψ〉 is a quantum state, we know that there must be amplitudes a0 and a1 such
that |ψ〉 = a0|0〉 + a1|1〉 where |a0|2 + |a1|2 = 1. However, show there also exist α0, α1

(“alpha”) such that |ψ〉 = α0|φ0〉+ α1|φ1〉 where |α0|2 + |α1|2=1.

(b) Suppose we measure |ψ〉 using M . Let p0 be the probability of outcome |φ0〉 and let p1
be the probability of outcome |φ1〉. Use part (a) to show that p0 + p1 = 1, that is, the
sum of the outcome probabilities is 1.

(c) What have you learned about about quantum measurements and quantum states from
this problem?

4. Let |ψ〉 be a vector representing a qubit quantum state. Let |ψ′〉 = eiω|ψ〉 for ω ∈ R. We call
a complex number of the form eiω a phase. (A phase is a complex number whose absolute
value is 1.) When a phase multiplies an entire quantum state, as in the case eiω|ψ〉, we call
it a global phase.

(a) Show that |ψ′〉 also represents a qubit state.
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(b) Show that any measurements give exactly the same outcome statistics and states on |ψ〉
and |ψ′〉.

(c) Is it possible to tell the difference between |ψ〉 and |ψ′〉? What have you learned about
quantum states and their mathematical representations from doing this problem?

5. [Moved to next week] Consider the 2-qubit state |ψ〉 = 1√
2
|01〉AB − 1√

2
|10〉AB. This state

has some strange properties - in particular the two qubits are perfectly anticorrelated. It’s
behavior is so strange, it caused Einstein to believe that quantum mechanics couldn’t possibly
describe reality.

(a) Suppose Alice and Bob each measure their qubit in the same basis. That is, Alice
and Bob both each apply the measurement M(η, χ) = {|φ0(η, χ)〉, |φ1(η, χ)〉}, where
|φ0(η, χ)〉 = cos η|0〉 + eiχ sin η|1〉 and |φ1(η, χ)〉 = − sin η|0〉 + eiχ cos η|1〉. (η is pro-
nounced “ay-tah” and spelled eta, and χ is pronounced “kai” and spelled chi, and φ
is pronounced “fie” and spelled phi.) Show that if Alice gets outcome |φ0(η, χ)〉, Bob
will get outcome |φ1(η, χ)〉, or vice versa. M(η, χ) is “generic” in that by choosing any
various real numbers for χ and η, we can make M(η, χ) represent any possible qubit
measurement. Please calculate the probability of at least one outcome by hand for prac-
tice. If you feel like you don’t need additional practice, you may use a computer to
calculate the others.

(b) What is the overall probability that Alice gets outcome |φ0(η, χ)〉? What is the proba-
bility that she gets |φ1(η, χ)〉?

(c) This anticorrelation is strange because of the following thought experiment. Suppose
Alice took her qubit to the moon, and Bob stayed on Earth. Now Alice performs her
measurement first, and suppose she gets outcome |φ0(η, χ)〉. Then, even if Bob performs
his measurement before any lightspeed communication can have happened between Alice
and Bob, Bob’s qubit somehow knows to choose the opposite outcome. This will happen
no matter which values of η and χ Alice and Bob choose. People thought that this might
enable faster-than-light communication, but explain why Part (b) of this question rules
out faster-than-light communication.

(d) We also can have classical (non-quantum) bits that are probabilistically anti-correlated.
Consider the following situation. I put a red sock in one box and a blue sock in another
box, and I give one box to Alice and one box to Bob, without telling them which box
contains which sock. Once Alice opens her box and sees a blue sock, she immediately
knows that Bob’s box contains a red sock. Why is the quantum situation stranger than
this classical situation?

6. Optional Further Reading:

(a) UK Government Thoughts on Quantum Cryptography

(b) French Governmetn Thoughts on Quantum Cryptography

(c) ID Quantique (one of the top companies selling QKD technology.)
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https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies
https://www.ssi.gouv.fr/en/publication/should-quantum-key-distribution-be-used-for-secure-communications/#note3
https://www.idquantique.com/

