
CS333 - Problem Set 11 (review)

Doing all of the problems on this pset might be a bit much, so I encourage you to focus on
those problems where you feel you need the most practice. I’ve put skills/concepts in parenthesis
at the beginning of each question to help you choose.

1. (Circuit analysis, partial measurements, also a really frequently used algorithmic tool)

(a) Consider the following circuit on 3 qubits. Let |ψ〉 and |φ〉 be any single-qubit states
(not necessarily standard basis states or orthogonal states), and let swap denote the
2-qubit gate that swaps its input qubits (i.e., swap|η〉|µ〉 = |µ〉|η〉 for any states |µ〉 and
|η〉). What is the final state of the following circuit (in terms of |ψ〉 and |φ〉 )?

|0〉 H • H

|ψ〉
swap

|φ〉

(1)

(b) Suppose the first (top) qubit in the above circuit is measured in the standard basis.
What is the probability that the measurement outcome is |0〉? Your answer should
depend on the inner product of |ψ〉 and |φ〉.

(c) How do the results of the previous parts change if |ψ〉 and |φ〉 are n-qubit states, and
swap denotes the 2n-qubit gate that swaps the first n qubits with the last n qubits?

(d) What is the purpose of this circuit?

2. (Analyzing cryptography protocols, analyzing measurement of 2-qubit system where each
qubit is measured independently) We didn’t have time to get into this topic this semester,
but it is impossible to make copies of quantum states. Because of this, people have been
working to develop secure quantum money that can’t be counterfeited. Eve knows it is
impossible to clone quantum states, but she thinks she has found a pretty good cloner that
will help her break the BB84 cryptography scheme. For each round of the cryptography
protocol, she prepares a qubit in the state |0〉E . When the photon that Alice is sending to
Bob comes to her, she applies the unitary:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2)

to the combined state of |ψ〉|0〉AE where |ψ〉A is the state of Alice’s photon that she has
intercepted. (Her goal is to clone some of the information from A into her E system.) Then
after acting with the unitary, she sends qubit A to Bob, and keeps system E but doesn’t
measure it yet. When Alice and Bob announce their measurement bases, if Alice and Bob’s
measurement bases were the same, Eve measures her system in that basis.
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(a) In what way does CNOT act like a cloner? In what situations does CNOT act like a
cloner and when does it not? Please explain.

(b) Is this a good strategy? Compare to Eve’s strategy where she always chooses to measure
each incoming photon in the basis {|0〉, |1〉}.

3. (Complex phases, unitaries represented using summation notation)Quantum Fourier Trans-
form and Period Finding. For a standard basis states |x〉 ∈ Ct,

QFTt|x〉 =
1√
t

t−1∑
y=0

e2πixy/t|y〉; QFT−1
t |x〉 =

1√
t

t−1∑
y=0

e−2πixy/t|y〉 (3)

Show that QFT−1
t is the inverse of QFT . In other words, show:

QFT−1
t QFTt = I. (4)

4. (Error correction) This problem is a bit computational heavy, but good practice.

In this problem, we consider the same bit flip code as before: a|0〉 + b|1〉 is encoded as
a|000〉 + b|111〉, which we have seen is protected against X-type rotations on a single qubit.
We have so far only considered the case where exactly one qubit has been affected by a unitary
error. A more realistic error model is that small rotations affect all of the qubits at any time
step. Consider an error model where the error is the unitary Xθ acting in parallel on all 3
qubits in the code:

X⊗3
θ , (5)

where

Xθ =

(
cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
. (6)

In this problem, you should imagine that θ is very small.

(a) If the logical qubit is initially in the state a|000〉 + b|111〉 for a, b ∈ R, (i.e. a, b are not
complex - this just makes the calculations simpler), what is the state of the logical qubit
after this error has occurred? (That is, calculate X⊗3

θ (a|000〉 + b|111〉). You can keep
your answer undistributed if that is easier.)

(b) Consider the projective measurement:

M = {P0 = |000〉〈000|+ |111〉〈111|, P1 = |100〉〈100|+ |011〉〈011|,
P2 = |010〉〈010|+ |101〉〈101|, P3 = |001〉〈001|+ |110〉〈110|}. (7)

Use the projective measurement formalism to analyze the probability that P0 and P1

each occur, and how the state collapses in each case. (By symmetry, the case of P2 and
P3 will be similar to P1, so you do not need to go through them.)

(c) If outcome P0 occurs, we do nothing , and if outcome P1 occurs, we apply X to the first
qubit. What does the state become in this case?
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(d) Even though error correction (in either the P0 outcome or the P1 outcome) doesn’t return
us to our original state a|000〉+ b|111〉, the states that we do recover are extremely close
to a|000〉 + b|111〉 when θ is not too large. To see this, we can calculate the absolute
value squared of the inner product between the resultant state after error correction and
a|000〉+ b|111〉. Given two states |ψ〉 and |φ〉, the absolute value squared of their inner
product tells you about how difficult it is to distinguish between them: a value close to
1 means they are almost indistinguishable, and inner product close to 0 means they are
close to orthogonal and hence can be distinguished by a measurement.

Plot the absolute value of the inner product between a|000〉+b|111〉 and the resulting
states after error correction, averaged over the probability of the 4 different outcomes
P0, P1, P2, and P3 as a function of θ in the two cases that a = b = 1/

√
2 and a = 1,

b = 0 (which are the two extremal cases). So if pi is the probability of getting outcome
Pi and |ψi〉 is the state that results after error correction when outcome Pi is measured,
you should calculate

3∑
i=0

pi|〈ψi|(a|000〉+ b|111〉)|2. (8)

(You should assume the probability of getting outcomes P2 and P3 are the same as for
P1, and that the inner product is also the same as for P1).

On the same plots, compare to |〈ψerror|(a|000〉+b|111〉)|2, where |ψerror〉 is the state
after the error occurs if no error correction is applied. Comment on the efficacy of this
error correction protocol.
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