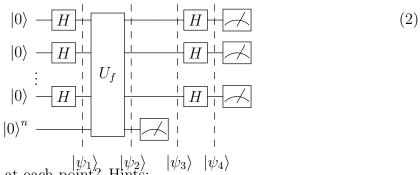
CS333 - Final Review

1. Consider the following two-qubit state:

$$\frac{1}{\sqrt{3}}\left(|0\rangle|+\rangle+|-\rangle|1\rangle\right)\tag{1}$$

- (a) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|0\rangle, |1\rangle\}$, what is the probability of getting outcome $|0\rangle$?
- (b) [3 points] If you get outcome $|0\rangle$ on the first qubit, what state will the second qubit collapse to?
- (c) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|+\rangle, |-\rangle\}$, what is the probability of getting outcome $|0\rangle$?
- (d) [3 points] If you get outcome $|+\rangle$ on the first qubit, what state will the second qubit collapse to?
- 2. Suppose you have a function $f : \{0,1\}^n \to \{0,1\}^n$, where f(x) = f(y) if and only if $x = y \oplus s$ for some $s \in \{0,1\}^n$. (Here \oplus means addition mod 2 for each bit of the string.) Otherwise, there is no structure in terms of which input gets assigned to which output.
 - (a) What is the classical query complexity of determining s?
 - (b) Suppose you have a unitary that acts as $U_f|x\rangle|0\rangle = |x\rangle|f(x)\rangle$. (For this algorithm, it doesn't matter how U_f acts on other standard basis states.) If we run the following algorithm:



what are the states at each point? Hints: $|\psi_1\rangle = |\psi_2\rangle = |\psi_2\rangle$

- $(a \oplus b) \cdot c \equiv a \cdot c + b \cdot c \mod 2$.
- There should be two standard basis states in superposition after the measurement of the second register.
- Recall how $H^{\otimes n}$ transforms standard basis states.
- Use linearity, obv!
- (c) Here is the classical post-processing fact. If you can learn randomly chosen z such that $z \cdot s = 0$, then using O(n) such z, can figure out s. Use this fact to determine the quantum query complexity of learning s.