SKIMMER
Suppose you run algorithm twice and get c, c^{\prime} both good, and get approximations $\frac{a}{b}$, $\frac{a}{b}$, then prob. $\operatorname{LCM}\left(b, b^{\prime}\right)=r$ is $\frac{1}{2}$.

Time Complexity of factoring Comparison to Classical
N is size of domain of f $\Leftrightarrow N$ is \# to factor

- Us: For factoring application: $O\left(\log _{2} N\right)$ gates
$\Rightarrow O\left(\left(\log _{2} N\right)^{2}\right)$ time for Quantum $\Rightarrow\left(e^{0\left(\left(\log _{2} N\right)^{1 / 3}\right)}\right.$ for classical "number field sieve"
sub-exponential in $\log _{2} N$ (almost exponential) \downarrow polynomial in $\log _{2} N$

