CS333 - Gates Worksheet

1. We have three ways of representing unitaries: in matrix form, in terms of how it transforms standard basis states, and in ket-bra form. I will give you a unitary in one of the forms; please write its representation using the other two forms, and also verify that it is indeed unitary.
(a)

$$
C P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

(b)

$$
\begin{align*}
& U|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle), \\
& U|1\rangle=\frac{1}{\sqrt{2}}(-i|0\rangle-|1\rangle) \tag{2}
\end{align*}
$$

(c) $V=|00\rangle\langle 00|+|11\rangle\langle 11|+\frac{1}{\sqrt{2}}(|01\rangle\langle 01|+|01\rangle\langle 10|+|10\rangle\langle 01|-|10\rangle\langle 10|)$

Solution

(a) In ket-bra form: $C P=|00\rangle\langle 00|+|01\rangle\langle 01|+|10\rangle\langle 10|+i|11\rangle\langle 11|$, and

$$
\begin{align*}
& C P|00\rangle=|00\rangle \\
& C P|01\rangle=|01\rangle \\
& C P|10\rangle=|10\rangle \\
& C P|11\rangle=i|11\rangle . \tag{3}
\end{align*}
$$

To verify that $C P$ is unitary, note that $(C P)^{\dagger}$ is the same as $C P$ but with i replaced by $-i$. Then you can check that $C P(C P)^{\dagger}=I$.
(b)

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -i \tag{4}\\
i & -1
\end{array}\right)
$$

and $U=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|-|1\rangle\langle 1|-i|0\rangle\langle 1|+i|1\rangle\langle 0|)$. Finally in this case $U=U^{\dagger}$, and you can verify that $U U=I$, so U is unitary.
(c)

$$
V=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{5}\\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
\begin{align*}
V|00\rangle & =|00\rangle \\
V|01\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
V|10\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \\
V|11\rangle & =|11\rangle \tag{6}
\end{align*}
$$

In this case, $V^{\dagger}=V$, and you can verify that $V V=I$.
2. If U is a unitary and $|\psi\rangle$ is a quantum state, is $U|\psi\rangle$ always a state? (Think about what our criteria are for quantum states.)

Solution For $U|\psi\rangle$ to be a quantum state, it must be a normalized complex-valued vector. Since a matrix times a vector gives us another vector, we do have a complexvalued vector, so we just need to check it is is normalized. Let $\left|\psi^{\prime}\right\rangle=U|\psi\rangle$. To check that it is normalized, we need to verify that $\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=1$. But $\left\langle\psi^{\prime}\right|=\langle\psi| U^{\dagger}$, so

$$
\begin{equation*}
\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi| I|\psi\rangle=\langle\psi \mid \psi\rangle=1 . \tag{7}
\end{equation*}
$$

3. Unitary operations are reversible. This means for any unitary U there is another unitary matrix V that undoes the action of U. What is this other matrix and how do you know it is a unitary (and hence a valid quantum operation)? Unitary operations contrast with quantum measurements, which we describe as being non-reversible. Why are measurements non-reversible?

Solution U^{\dagger} undoes the action of U, since $U^{\dagger} U=I$. Now we just need to check that U^{\dagger} is unitary. U^{\dagger} is unitary if $U^{\dagger}\left(U^{\dagger}\right)^{\dagger}=I$, but $\left(U^{\dagger}\right)^{\dagger}=U$, and we already know $U^{\dagger} U=1$, so U^{\dagger} is indeed unitary.

This contrasts with quantum measurements because of the collapse that occurs during a measurement. If you did not know the details of the state of the system before measurement, the collapse means that information is lost. However, with a unitary operation, even if we don't know what the original state was before the unitary, we can always recover it by applying the conjugate transpose of the unitary.

