CS333 - Gates Worksheet

- 1. We have three ways of representing unitaries: in matrix form, in terms of how it transforms standard basis states, and in ket-bra form. I will give you a unitary in one of the forms; please write its representation using the other two forms, and also verify that it is indeed unitary.
 - (a)

$$CP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$
(1)

(b)

$$U|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle),$$

$$U|1\rangle = \frac{1}{\sqrt{2}} (-i|0\rangle - |1\rangle)$$
(2)

- (c) $V = |00\rangle\langle 00| + |11\rangle\langle 11| + \frac{1}{\sqrt{2}}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| |10\rangle\langle 10|)$
- 2. If U is a unitary and $|\psi\rangle$ is a quantum state, is $U|\psi\rangle$ always a state? (Think about what our criteria are for quantum states.)
- 3. I said the unitary operation U is reversible. This means there is another unitary matrix V that undoes the action of U. What is this other matrix and how do you know it is a unitary (and hence a valid quantum operation)?