CS333 - Gates Worksheet

1. We have three ways of representing unitaries: in matrix form, in terms of how it transforms standard basis states, and in ket-bra form. I will give you a unitary in one of the forms; please write its representation using the other two forms, and also verify that it is indeed unitary.
(a)

$$
C P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{1}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

(b)

$$
\begin{align*}
U|0\rangle & =\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle) \\
U|1\rangle & =\frac{1}{\sqrt{2}}(-i|0\rangle-|1\rangle) \tag{2}
\end{align*}
$$

(c) $V=|00\rangle\langle 00|+|11\rangle\langle 11|+\frac{1}{\sqrt{2}}(|01\rangle\langle 01|+|01\rangle\langle 10|+|10\rangle\langle 01|-|10\rangle\langle 10|)$
2. If U is a unitary and $|\psi\rangle$ is a quantum state, is $U|\psi\rangle$ always a state? (Think about what our criteria are for quantum states.)
3. I said the unitary operation U is reversible. This means there is another unitary matrix V that undoes the action of U. What is this other matrix and how do you know it is a unitary (and hence a valid quantum operation)?

