CS333 - Final Review

1. Consider the following two-qubit state:

$$
\begin{equation*}
\frac{1}{\sqrt{3}}(|0\rangle|+\rangle+|-\rangle|1\rangle) \tag{1}
\end{equation*}
$$

(a) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|0\rangle,|1\rangle\}$, what is the probability of getting outcome $|0\rangle$?
(b) [3 points] If you get outcome $|0\rangle$ on the first qubit, what state will the second qubit collapse to?
(c) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|+\rangle,|-\rangle\}$, what is the probability of getting outcome $|0\rangle$?
(d) [3 points] If you get outcome $|+\rangle$ on the first qubit, what state will the second qubit collapse to?

Solution

(a) We can rewrite $|\psi\rangle$ as

$$
\begin{align*}
|\psi\rangle & =\frac{1}{\sqrt{3}}\left(|0\rangle|+\rangle+\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)|1\rangle\right) \\
& \left.=\frac{1}{\sqrt{3}}\left(\left.|0\rangle\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{2}{\sqrt{2}}|1\rangle\right)+|1\rangle \right\rvert\, \text { something }\right\rangle\right) \tag{2}
\end{align*}
$$

Then we can normalize the state that the second qubit is in if the first qubit is in $|0\rangle$ as

$$
\begin{equation*}
\left.|\psi\rangle=\frac{1}{\sqrt{3}}\left(\left.\frac{\sqrt{5}}{\sqrt{2}}|0\rangle\left(\frac{\sqrt{2}}{\sqrt{5}}\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{2}{\sqrt{2}}|1\rangle\right)\right)+|1\rangle \right\rvert\, \text { something }\right\rangle\right) \tag{3}
\end{equation*}
$$

Thus the probability of outcome $|0\rangle$ is $\left|\frac{1}{\sqrt{3}} \times \frac{\sqrt{5}}{\sqrt{2}}\right|^{2}=5 / 6$.
(b) Reading off of the previous equation, we see the second qubit is left in the state

$$
\begin{equation*}
\frac{\sqrt{2}}{\sqrt{5}}\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{2}{\sqrt{2}}|1\rangle\right) \tag{4}
\end{equation*}
$$

(c) We can rewrite the state as

$$
\begin{align*}
|\psi\rangle & =\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)|+\rangle+|-\rangle|1\rangle\right) \\
& \left.\left.=\frac{1}{\sqrt{6}}|+\rangle|+\rangle+\alpha|-\rangle \right\rvert\, \text { something }\right\rangle \tag{5}
\end{align*}
$$

So the probability of getting $|+\rangle$ is $1 / 6$.
(d) The second qubit will be left in the state $|+\rangle$.
2. Suppose you have a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, where $f(x)=f(y)$ if and only if $x=y \oplus s$ for some $s \in\{0,1\}^{n}$. (Here \oplus means addition mod 2 for each bit of the string.) Otherwise, there is no structure in terms of which input gets assigned to which output. Recall for standard basis states: $H^{\otimes n}|x\rangle=\sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle$, where $x \cdot y=\sum_{j=1}^{n} x_{j} y_{j}$ where x_{j} is the j th bit of x and y_{j} is the j th bit of y.
(a) What is the classical query complexity of determining s ?
(b) Suppose you have a unitary that acts as $U_{f}|x\rangle|0\rangle=|x\rangle|f(x)\rangle$. (For this algorithm, it doesn't matter how U_{f} acts on other standard basis states.) If we run the following algorithm:

What are the states at each point?
(c) If you can find $O(n)$ (randomly chosen) z such that $z \cdot s=0 \bmod 2$, then can figure out s. Use this fact to determine the quantum query complexity of learning s.

Solution

(a) We need to find an pair $\{x, y\}$ such that $f(x)=f(y)$. We might have to look at half of the inputs before we find such a pair, so the query complexity is $O\left(2^{n}\right)$ (since the total number of inputs is 2^{n}.)
(b)

$$
\begin{gather*}
\left|\psi_{1}\right\rangle=\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle . \tag{7}\\
\left|\psi_{2}\right\rangle=\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle . \tag{8}
\end{gather*}
$$

Suppose we measure b. Then there are exactly two inputs x_{b} and y_{b} such that $f\left(x_{b}\right)=f\left(y_{b}\right)=b$, and $x=y_{b} \oplus s$

$$
\begin{equation*}
\left|\psi_{3}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|x_{b}\right\rangle+\left|y_{b}\right\rangle\right)|b\rangle \tag{9}
\end{equation*}
$$

(We drop the B system from here forward.)

$$
\begin{align*}
\left|\psi_{4}\right\rangle & =\frac{1}{\sqrt{2}} \times \frac{1}{2^{n / 2}} \sum_{z \in\{0,1\}^{n}}(-1)^{x_{b} \cdot z}|z\rangle+(-1)^{y_{b} \cdot z}|z\rangle \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{z \in\{0,1\}^{n}}\left((-1)^{x_{b} \cdot z}+(-1)^{y_{b} \cdot z}\right)|z\rangle \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{z \in\{0,1\}^{n}}\left((-1)^{x_{b} \cdot z}+(-1)^{\left(x_{b} \oplus s\right) \cdot z}\right)|z\rangle \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{z \in\{0,1\}^{n}}\left((-1)^{x_{b} \cdot z}+(-1)^{x_{b} \cdot z+s \cdot z}\right)|z\rangle \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{z \in\{0,1\}^{n}}(-1)^{x_{b} \cdot z}\left(1+(-1)^{s \cdot z}\right)|z\rangle . \tag{10}
\end{align*}
$$

If $s \cdot z \equiv 1 \bmod 2$, then we have zero amplitude on that $|z\rangle$, so we will never measure it. Thus we will only measure $|z\rangle$ such that $s \cdot z \equiv 0 \bmod 2$.
(c) By repeating this process $O(n)$ times, we will obtain a set of bit strings that have inner product 0 with s, and then we can determine s.
3. I said that there is a similar code to the 3-qubit bit-flip code we looked at in class that corrects Z errors. The idea is to convert from the $|0\rangle /|1\rangle$ view to a $|+\rangle /|-\rangle$ view, since
 3-qubit bit-flip code.
(a) Draw a circuit that encodes a qubit $a|0\rangle+b|1\rangle$ into a 3-qubit state that corrects against Z errors. (Your circuit should use standard gates like $H, C N O T$, etc.)
(b) Show how to detect Z errors using two ancillary qubits, control operations, and a measurement of the ancillary qubits.
(c) What is the projective measurement that your circuit in part (b) accomplishes?

Solution

(a) We first write the initial state in the $|+\rangle,|-\rangle$, basis:

$$
\begin{equation*}
\alpha|+\rangle+\beta|-\rangle, \tag{11}
\end{equation*}
$$

where $\alpha=\frac{1}{\sqrt{2}}(a+b)$ and $\alpha=\frac{1}{\sqrt{2}}(a-b)$. Now we would like to create the state $\alpha|+++\rangle+\beta|---\rangle$ because then if a Z error occurs on one qubit, we can do a majority vote among + and - to detect and correct. To do this, we want to append 2 qubits in the state $|+\rangle$, and then if our initial qubit is in the state
 we want to apply the operation $|+\rangle\langle+| \otimes I+|-\rangle\langle-| \otimes Z$. This is the same as $(H \otimes H) C N O T(H \otimes H)$. Thus our full circuit is

(b) We again attach two ancillary qubits, but instead of wanting to flip the target when the control has value $|1\rangle$, we want to flip when the control has value $|-\rangle$, so we apply H only on the control qubits around the CNOT. This results in the following circuit (the input is $\alpha|+++\rangle_{A B C}+\beta|---\rangle_{A B C}$).

(c) The projectors of our effective measurement are

$$
\begin{align*}
& P_{0}=|+++\rangle\langle+++|+|---\rangle\langle---| \\
& P_{1}=|-++\rangle\langle-++|+|+--\rangle\langle+--| \\
& P_{2}=|+-+\rangle\langle+-+|+|-+-\rangle\langle-+-| \\
& P_{3}=|++-\rangle\langle++-1+\mid--+\rangle\langle--+| \tag{14}
\end{align*}
$$

Hints on 1:

- $(a \oplus b) \cdot c \equiv a \cdot c+b \cdot c \bmod 2$.
- There should be two standard basis states in superposition after the measurement of the second register.

Hints on 2:

- Convert the initial state to $|+\rangle /|-\rangle$ basis. Then think about how you can convert the

