CS333 - Final Review

1. Consider the following two-qubit state:

$$
\begin{equation*}
\frac{1}{\sqrt{3}}(|0\rangle|+\rangle+|-\rangle|1\rangle) \tag{1}
\end{equation*}
$$

(a) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|0\rangle,|1\rangle\}$, what is the probability of getting outcome $|0\rangle$?
(b) [3 points] If you get outcome $|0\rangle$ on the first qubit, what state will the second qubit collapse to?
(c) [3 points] If you measure the first qubit of $|\psi\rangle$ using the basis $\{|+\rangle,|-\rangle\}$, what is the probability of getting outcome $|0\rangle$?
(d) [3 points] If you get outcome $|+\rangle$ on the first qubit, what state will the second qubit collapse to?
2. Suppose you have a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, where $f(x)=f(y)$ if and only if $x=y \oplus s$ for some $s \in\{0,1\}^{n}$. (Here \oplus means addition mod 2 for each bit of the string.) Otherwise, there is no structure in terms of which input gets assigned to which output. Recall for standard basis states: $H^{\otimes n}|x\rangle=\sum_{y=0}^{2^{n}-1}(-1)^{x \cdot y}|y\rangle$, where $x \cdot y=\sum_{j=1}^{n} x_{j} y_{j}$ where x_{j} is the j th bit of x and y_{j} is the j th bit of y.
(a) What is the classical query complexity of determining s ?
(b) Suppose you have a unitary that acts as $U_{f}|x\rangle|0\rangle=|x\rangle|f(x)\rangle$. (For this algorithm, it doesn't matter how U_{f} acts on other standard basis states.) If we run the following algorithm:

What are the states at each point?
(c) If you can find $O(n)$ (randomly chosen) z such that $z \cdot s=0 \bmod 2$, then can figure out s. Use this fact to determine the quantum query complexity of learning s.
3. I said that there is a similar code to the 3-qubit bit-flip code we looked at in class that corrects Z errors. The idea is to convert from the $|0\rangle /|1\rangle$ view to a $|+\rangle /|-\rangle$ view, since
 3 -qubit bit-flip code.
(a) Draw a circuit that encodes a qubit $a|0\rangle+b|1\rangle$ into a 3-qubit state that corrects against Z errors. (Your circuit should use standard gates like $H, C N O T$, etc.)
(b) Show how to detect Z errors using two ancillary qubits, control operations, and a measurement of the ancillary qubits.
(c) What is the projective measurement that your circuit in part (b) accomplishes?

Hints on 1:

- $(a \oplus b) \cdot c \equiv a \cdot c+b \cdot c \bmod 2$.
- There should be two standard basis states in superposition after the measurement of the second register.

Hints on 2:

- Convert the initial state to $|+\rangle /|-\rangle$ basis. Then think about how you can convert the

