CS333 - Qubit Worksheet

1. If you measure the state $|\psi\rangle=\frac{1}{\sqrt{3}}|0\rangle+i \sqrt{\frac{2}{3}}|1\rangle$ in the standard basis, what happens, and with what probability? What about if you measure using the basis $\{|\rightarrow\rangle,|\leftarrow\rangle\}$?

Solution With the first measurement, you get outcome $|0\rangle$ with probability $1 / 3$ and outcome $|1\rangle$ with probability $2 / 3$. With the second measurement, you get outcome $|\rightarrow\rangle$ with probability $\frac{(\sqrt{2}+1)^{2}}{6}$, and outcome $|\leftarrow\rangle$ with probability $\frac{(\sqrt{2}-1)^{2}}{6}$.

See next page for more detailed notes on how to get these solutions, using both vector and ket notation.
2. If you have two qubits states $|\psi\rangle$ and $|\phi\rangle$ such that $\langle\psi \mid \phi\rangle=0$, explain what measurement you should use to perfectly distinguish between these two states?

Solution Note that $\{|\psi\rangle,|\phi\rangle\}$ is an orthonormal basis, since $\langle\psi \mid \psi\rangle=\langle\phi \mid \phi\rangle=1$ because $|\phi\rangle$ and $|\psi\rangle$ represent qubit states, and $\langle\phi \mid \psi\rangle=0$. So $\{|\psi\rangle,|\phi\rangle\}$ represents a valid quantum meausurement. If we use this measurement to measure either $|\phi\rangle$ or $|\psi\rangle$, we will get each outcome with probability 1 or 0 , so we perfectly distinguish between these states.
3. Explain what will happen in the following situations using bra and ket notation, and the language of collapse:
(a) Alice prepares a right diagonal photon, and Bob measures it using a vertically polarized filter.
(b) Alice prepares a left diagonal photon, and Bob measures it using a right diagonally polarized filter.

Solution

(a) Alice prepares the state $|+\rangle$, and Bob measures in the $\{|0\rangle,|1\rangle\}$ basis. Therefore, he gets outcome $|0\rangle$ with probability $|\langle 0 \mid+\rangle|^{2}=1 / 2$. In this case, the qubit collapses to the state $|0\rangle$ and so passes through the filter. He gets outcome $|1\rangle$ with probability $|\langle 1 \mid+\rangle|^{2}=1 / 2$. In this case, the state collapses to the state $|1\rangle$ and gets blocked by the filter.
(b) Alice prepares the state $|-\rangle$, and Bob measures in the $\{|+\rangle,|-\rangle\}$ basis. Therefore, he gets outcome $|-\rangle$ with probability $|\langle-\mid-\rangle|^{2}=1$. In this case, the qubit doesn't collapse (it stays in the same state), which gets blocked by the filter, so nothing emerges.
S.KIMMEL
$\left.\right|^{\text {st }}$ case: $M=\{|0\rangle,|1\rangle\}$

- outcome $|0\rangle$

$$
\begin{aligned}
|\langle 0 \mid \psi\rangle|^{2} & =\left\lvert\,\left.\langle 0|\left(\frac{1}{\sqrt{3}}|0\rangle+i \sqrt{\frac{2}{3}}|1\rangle\right)\right|^{2}\right. \\
& =\left|\frac{1}{\sqrt{3}}\langle 0 \mid 0\rangle+i \sqrt{\frac{2}{3}}\langle 0 \mid 1\rangle\right|^{2} \\
& =\left|\frac{1}{\sqrt{n}}\right|^{2}=\frac{1}{3} \quad \text { probability }
\end{aligned}
$$

or $|\langle 0 \mid \psi\rangle|^{2}=\left|\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{\frac{1}{\sqrt{3}}}{i \sqrt{\frac{2}{3}}}\right|^{2}=\left|\frac{1}{\sqrt{3}}\right|^{2}=\frac{1}{3}$

- Outcome $|1\rangle$

$$
\begin{aligned}
|\langle || \psi\rangle\left.\right|^{2} & =\left\lvert\,\left.\langle 1|\left(\frac{1}{\sqrt{3}}|0\rangle+i \sqrt{\frac{2}{3}}|1\rangle\right)\right|^{2}\right. \\
& =\left|\frac{1}{\sqrt{3}}\langle 1 \mid 0\rangle+i \sqrt{\frac{2}{3}}\langle 1 \mid 1\rangle\right|^{2} \\
& =\left|i \sqrt{\frac{3}{3}}\right|^{2}=i \sqrt{\frac{2}{3}} \cdot(-i) \cdot \sqrt{\frac{2}{3}}=\frac{2}{3} \text { probability }
\end{aligned}
$$

$\stackrel{\text { or }}{=} \quad|\langle || \psi\rangle\left.\right|^{2}=\left|\left(\begin{array}{ll}0 & 1\end{array}\right)\binom{\frac{1}{\sqrt{3}}}{i \sqrt{\frac{2}{3}}}\right|^{2}=\left|i \sqrt{\frac{2}{3}}\right|^{2}=\frac{2}{3}$
S.Kimmel
$2^{\text {nd }}$ Case $\quad M=\{|\rightarrow\rangle, \mid \leftrightarrow\}$

- Outcome $|\rightarrow\rangle$

$$
\begin{aligned}
&|\langle\rightarrow \mid \psi\rangle|^{2}=\left\lvert\,\left(\frac{1}{\sqrt{2}}\langle 0|-\frac{i}{\sqrt{2}}\langle 1|\right)\left(\frac{1}{\sqrt{3}}|0\rangle+\left.i \sqrt{\frac{2}{3}}|1\rangle\right|^{2}\right.\right. \\
&=\left.\left|\frac{1}{\sqrt{6}}\langle 0 \mid 0\rangle-\frac{i}{\sqrt{6}}\langle 1 \mid 0\rangle+i \sqrt{\frac{1}{3}}\langle 0 \mid 1\rangle+\frac{1}{\sqrt{3}}\langle\mid 1\rangle\right\rangle\right|^{2} \\
&\left.=\left\lvert\, \frac{1}{\sqrt{6}}+\frac{1}{\sqrt{3}}\right.\right)^{2}=\left|\frac{1+\sqrt{2}}{\sqrt{6}}\right|^{2}=\frac{(1+\sqrt{2})^{2}}{6} \\
& \stackrel{o r}{=}\left|\frac{1}{\sqrt{2}}(1-i)\binom{1 / \sqrt{3}}{i \sqrt{\frac{2}{3}}}\right|^{2}=\left|\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{3}}+\sqrt{\frac{2}{\sqrt{3}}}\right)\right|^{2}=\frac{(1+\sqrt{2})^{2}}{6}
\end{aligned}
$$

- Outcome $|<\rangle$

$$
\begin{aligned}
|\langle\leftarrow \mid \psi\rangle|^{2}=\left\lvert\, \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{\frac{1}{\sqrt{3}}}{i \sqrt{\frac{2}{3}}}\right. & =\left|\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{3}}-\frac{\sqrt{2}}{3}\right)\right|^{2} \\
& =\frac{(\sqrt{2}-1)^{2}}{6}
\end{aligned}
$$

