Learning Goals

- · Analyze gubit behavior using vectors.
- · Describe CHSH game.

• Qubit State
$$\rightarrow \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} |a_0|^2 + |a_1|^2 = 1$$

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle \rightarrow a_0 |0\rangle + a_1 |0\rangle = a_0 |0\rangle + a_1 |0\rangle$$

• Inner product of $|47\rangle$ and $|4\rangle$:

$$\langle \phi | \psi \rangle = \left(\frac{b^{\dagger}}{72}, \frac{b^{\prime}}{72} + c^{\prime} \right)$$

"bra" $\Rightarrow \langle \phi | = \text{conjugate transpose of } \phi \rangle$
 $\langle \alpha_1 \rangle$

(use matrix =
$$\frac{a_0b^*}{12} + \frac{a_1b^*}{12} + a_1c^*$$

Q: What is the inner product of a state 14) with itself?

A):
$$0$$
, B) $\frac{1}{2}$ C) 1 D) Depends on state

Q: What is the inner product of a state 14) with itself?

A): O, B) $\frac{1}{2}$ C) 1 D) Depends on state

 $|\psi\rangle = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \qquad \langle \psi | \psi \rangle = (\alpha_0^* \ \alpha_1^*) \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} = \alpha_0^* \alpha_0 + \alpha_1^* \alpha_1$ $= |\alpha_0|^2 + |\alpha_1|^2 = 1$

Qubit Measurement

Represented by: orthonormal basis:
$$M = \{1/0\}, 1/0, 1\}$$

$$\frac{(/0, |0|) = 0, \text{ and } (/0, |0|) = (/0, |0|) = 1}{\text{orthogonal}}$$
Normalized

If measure state $|\Psi\rangle$ · with probability $|\langle \phi \circ | \Psi \rangle|^2$, get outcome $|\phi_0\rangle$, state becomes $|\phi_0\rangle$ · with probability $|\langle \phi \circ | \Psi \rangle|^2$, get outcome $|\phi_1\rangle$, state becomes $|\phi_1\rangle$ We say "state $|\Psi\rangle$ collapses to $|\phi_0\rangle$ or $|\phi_1\rangle$ "

Examples of $\{|\phi\rangle, |1\rangle\}$, $\{|+\gamma, |-\gamma\}$, $\{|-\gamma\rangle, |-\gamma\}$