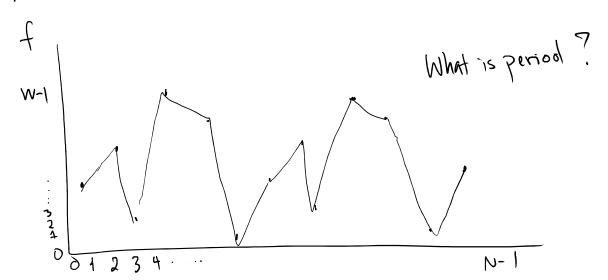


- · Range of f is [W], In other words: f:[N] > [w]
- f periodic period $r \Rightarrow f(x) = f(x+r)$
- · no repeats within a period · (f(i) * f(j)) if $|i-j| \ge r$
- · N > 12



48 Changing standard basis labels:

What is classical guery complexity of period finding?

A O(log r) B. O(r) (. O(r2) O(N)

Ask f(1), f(2), f(3)... until get a repeat value. Need to look at r values

· Let Uf act on NxR dimensional quantum system

Uf |x>|y> = |x>|y+f(x) mod W>

N-dim W-dim

48 Changing standard basis labels:

S.KIMMEL

f: [100]
$$\rightarrow$$
 [50] Suppose $f(5) = 23$

domain range

$$U_{f}(5)|30\rangle = |5\rangle |30+23 \mod 50\rangle$$

$$= |5\rangle |3\rangle$$

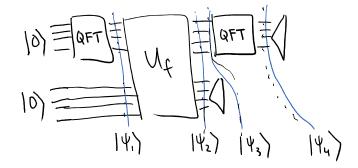
$$= |609\text{th} \rightarrow \begin{pmatrix} 0 \\ 9 \\ 0 \\ 100 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \leftarrow \text{length } 50$$

S.KIMMEL

Basic Algorithm:

- 1. Prepare 10/10/8 N-dim W-dim
- 2. Apply QFTN to A
- 3. Apply Uf to A,B
- 4. Measure B in standard basis
- 5. Apply QFTN to A
- 6. Measure A in standard basis

Q: Write as circuit -



Full Algorithm

Run basic algorithm twice. Get outcomes y, y'.

Do Classical postprocessing on y, y'. Outcome of postprocessing is r with high probability. Check by querying f(1) and f(r+1)

Important Unitary: Quantum Fourier Transform for Period Finding J

OFT_t is an $t \times t$ unitary

For standard basis state $|X\rangle$: $QFT_{t}|X\rangle = \frac{1}{t} \sum_{y=0}^{t-1} e^{2\pi i x y} |y\rangle$

Q: If apply QFIz to a standard basis state IX) and then Measure in standard basis, what is the probability of getting outcome y:

 $A) \frac{1}{t}$ $B) \frac{1}{t}$ $C) \frac{xy}{t}$ $d \frac{y}{t}$

Important Unitary: Quantum Fourier Transform

OFT_t is an $t \times t$ unitary

For standard basis state $|X\rangle$: $QFT_{t}|X\rangle = \frac{1}{t} \sum_{y=0}^{t'} e^{2\pi i x y} |y\rangle$

Q: If apply QFIz to a standard basis state IX) and then measure in standard basis, what is the probability of getting outcome y:

Because $\left|\frac{2\pi i \times y}{t}\right|^2 = \left|\frac{1}{t}\right|^2 \left|e^{2\pi i \times y/t}\right|^2 = \left|\frac{1}{t}\right|^2 \left|e^{2\pi i \times y/t}\right|^2$

OFT Tricks

Q: What is $\sum_{k=0}^{4-1} e^{2\pi i k y/t}$ if $y = n \cdot t$

A) OB) 1 C) Depends on D) t

Q: What is $\sum_{k=0}^{4-1} e^{2\pi i k y/t}$ if $y \neq n \neq 1$ B) 1 () Depends on D) t A) O

SKIMMEL

$$\sum_{k=0}^{t-1} e^{3\pi i k y} = \sum_{k=0}^{t-1} \left(e^{3\pi i y}\right)^k$$

Geometric Series:
$$\sum_{k=0}^{t-1} x = \frac{|-r|^{k+1}}{|-r|}$$
 (r+1)

$$= \frac{1 - e^{\frac{2\pi i \psi}{e}}}{1 - e^{\frac{2\pi i \psi}{e}}} = \frac{1 - e^{2\pi i \psi}}{1 - e^{2\pi i \psi}} = 0$$

$$\sum_{k=0}^{t-1} G_k \left(\sum_{j=0}^{t-1} b_j | j \right)$$

Distribute

$$\begin{cases}
\frac{t-1}{2} & \frac{t-1}{2} \\
\frac{t-1}{2} & \frac{t-1}{2}
\end{cases}$$
Swap

order

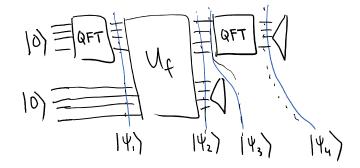
order

S.KIMMEL

Basic Algorithm:

- 1. Prepare 10/10/8 N-dim W-dim
- 2. Apply QFTN to A
- 3. Apply Uf to A,B
- 4. Measure B in standard basis
- 5. Apply QFTN to A
- 6. Measure A in standard basis

Q: Write as circuit -



Full Algorithm

Run basic algorithm twice. Get outcomes y, y'.

Do Classical postprocessing on y, y'. Outcome of postprocessing is r with high probability. Check by querying f(1) and f(r+1)

1.
$$|\psi\rangle = \left(QFT |0\rangle|0\right) = \frac{1}{N} \sum_{X=0}^{N-1} |X\rangle_{A} |0\rangle_{B}$$

2.
$$|\Psi_2\rangle = \frac{1}{\sqrt{N}} \sum_{X=0}^{N-1} |V_f(X)\rangle = \frac{1}{\sqrt{N}} \sum_{X=0}^{N-1} |X\rangle |f(X)\rangle$$

$$A) f(r)$$
 $B) f(m) (c) f(b) $D) f(mr)$$

$$b \in [r]$$
 $M \in \left(\frac{N}{r}\right)$

M=i, b=j corresponds to jth element of ith block of r

I with change of variables

Mb is # blocks where
b occurs. If r does
hot divide N evenly,
some values of b will
hot occur in last
block

SKIMMEL

3. Measure Bregister in standard basis.

Use partial measurement to analyze:

within a period

Q. What is the (approximate) value of &!

$$B)$$
 C D D

M = N or N-1 Because

Suppose we get outcome Is). Let by be value such that f(b*)=5. Then after measurement,

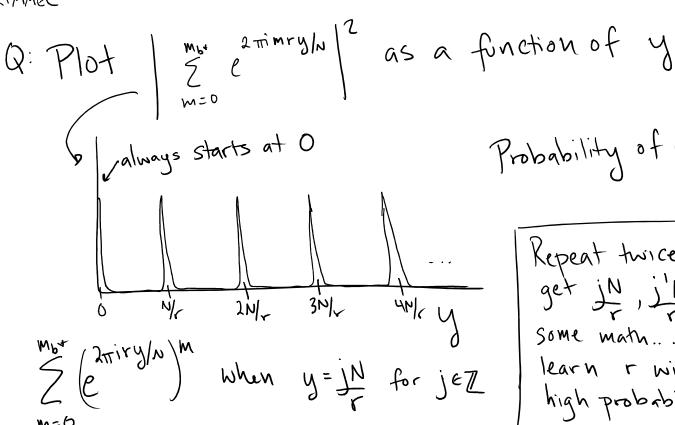
state collapses to:

We never do anything else with B system. Since partial Measurement leaves us in tensor state of A & B, we can ignore B from here on

S.KIMMEL Now apply OFTN to A: $|\Psi_{4}\rangle = QFT_{N} \frac{1}{\sqrt{m_{b^{*}}}} \sum_{l_{N}=N}^{N} |Mr+b^{*}\rangle = \frac{1}{\sqrt{m_{b^{*}}}} \frac{Z}{\sqrt{m_{b^{*}}}} |Mr+b^{*}\rangle$ Switch $= \frac{1}{N M_0^*} \sum_{y=0}^{N-1} \frac{2 \pi i N^y}{N} \frac{2 \pi i m^r y}{N}$ summation $= \sqrt{N M_0^*} \frac{1}{y^2} = \sqrt{N M_0^*} \frac{2 \pi i m^r y}{N} = \sqrt{N M_0^*} \frac{1}{N} \frac{1}{N} = \sqrt{N M_0^*} \frac{1}{N} = \sqrt{N M_0$ Factor out = Nm, y=0 e 2 timery | y = 0 | y | $|Y_{4}\rangle = \sum_{y=0}^{N-1} \frac{1}{Nm_{b}^{*}} e^{2\pi i b^{*} y \lambda} \left(\sum_{m=0}^{m_{b}-1} 2\pi i m r y \lambda \right) |y\rangle$ 5. Measure in standard basis:

Prooutcome (y) = | Think e 2 triby y/N = 2 triby y/N =

5. Measure in standard basis: $Pr(out(ome | y)) = \left| \frac{1}{\ln m_{l}} e^{2\pi i b^{*}y/N} \sum_{m=0}^{2} e^{2\pi i mry/N} \right|^{2}$ $= \left| \frac{1}{\ln m_{l}} e^{2\pi i b^{*}y/N} \right|^{2} \left| \sum_{m=0}^{2\pi i mry/N} e^{2\pi i mry/N} \right|^{2}$ $= \left| \frac{1}{\ln m_{l}} e^{2\pi i b^{*}y/N} \right|^{2} \left| \sum_{m=0}^{2\pi i mry/N} e^{2\pi i mry/N} \right|^{2}$



Probability of outcome Kepeat twice, Some math ...

high probability!

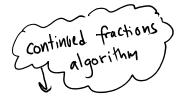
Q: Before QFT, we had 143) = [mr + b*)

Why not measure 143)? Plot probability of outcome

b* each time you repeat the circuit, get a different b* value.

We can't get this difference.

Classical Post Processing



1. Ny might not be an integer } |y> Ni get a guess for rules

2. If not prime (r=a·b)

Solution

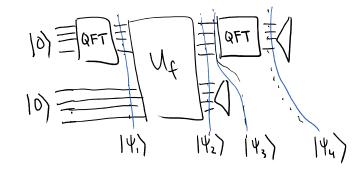
=> Measure twice:

 N_j , N_j

find least common multiple)

very likely to be

Basic Algorithm!



Full Algorithm

Run basic algorithm twice. Get outcomes y, y'.

Do Classical postprocessing on y, y'. Outcome of postprocessing is r with high probability. Check by guerying f(1) and f(r+1)

Quartum Query Complexity: O(1)

Classical Query Complexity: O(r)

But this is for period finding... what about factoring?

What about time complexity? (We care about time to implement QFT.

Time Complexity of factoring Comparison to Classical Jomain of f	
If want to factor number N , set $N=N$. Use $O(\log(n))$ gubits.	
· QFTN: O((log2N)2) single + 2 gubit gates	
· Uf: For factoring application: O(log2N) gates)
=> O((log_N)2) time for Quantum	
O((log2N))/3) for classical	
number field sieve algorithm Cub exponential in 1092 N (almost exponentia) J)
Sub-exponential in log2N (almost exponential polynomial in log2N	

"Exponential Speed-up"