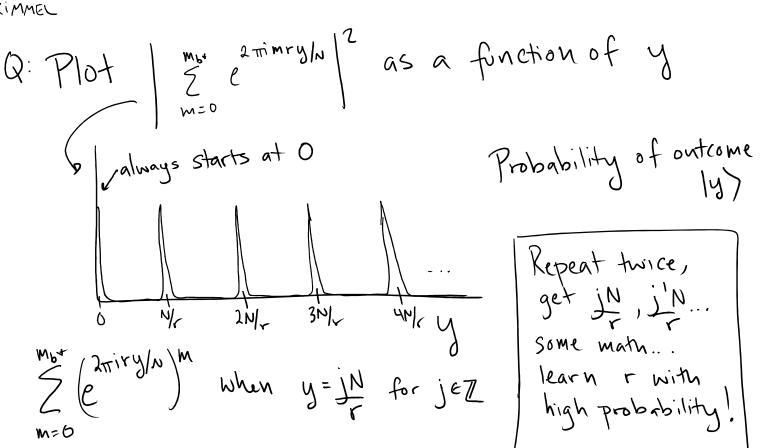
Period Finding Page 1

1.
$$|\Psi_{1}\rangle = (QFT |0\rangle|0\rangle = \frac{1}{m} \sum_{x=0}^{m-1} |x\rangle_{1}|0\rangle_{g}$$

2. $|\Psi_{2}\rangle = \frac{1}{m} \sum_{x=0}^{n-1} |U_{f}|x\rangle|0\rangle = \frac{1}{m} \sum_{x=0}^{n-1} |x\rangle|f(x)\rangle$
Recall: $f(x)$ is periodic. Let's write $x = mr+b$
G: What is $f(mr+b)$ equal $+b$?
A) $f(r)$ B) $f(m)$ (c) $f(b)$ D) $f(mr)$
 $\int \int f(r)$ B) $f(m)$ (c) $f(b)$ D) $f(mr)$
 $M = \begin{bmatrix} N \\ r \end{bmatrix}$
 $M = 1$ $m = 1$ $m = 1$
 $M = 1$, $b = j$ corresponds to j^{m} element of i^{m} block of r

$$|\Psi_2\rangle = \frac{1}{10} \sum_{b=0}^{r-1} \sum_{m=0}^{r-1} |mr+b\rangle |f(b)\rangle$$


Use partial measurement to analyze:

$$|\Psi_{2}\rangle = \sum_{b=0}^{r'} \left(\frac{1}{N} \sum_{m=0}^{m-1} |mr+b\rangle | f(b) \right)_{B} \qquad \text{shuller l basis states,} \\ \frac{1}{N} | f(b) \right)_{B} \qquad \text{shuller l basis states,} \\ \frac{1}{N} | f(b) \right)_{B} \qquad \text{shuller l basis states,} \\ \frac{1}{N} | f(b) \right)_{B} \qquad \text{shuller l basis states,} \\ \frac{1}{N} | f(b) \right)_{B} \qquad \text{shuller l basis are unique} \\ \frac{1}{N} | \Psi_{2} \rangle = \sum_{b=0}^{r'} \frac{1}{N} \left(\propto \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b) \rangle_{B} \\ \frac{1}{N} | H_{2} \rangle = \sum_{b=0}^{r'-1} \frac{1}{N} \left(\propto \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b) \rangle_{B} \\ \frac{1}{N} | H_{2} \rangle = \sum_{b=0}^{r'-1} \frac{1}{N} \left(\propto \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b) \rangle_{B} \\ \frac{1}{N} | H_{2} \rangle = \sum_{b=0}^{r'-1} \frac{1}{N} | f(b) \rangle_{B} \\ \frac{1}{N} | H_{2} \rangle = \sum_{b=0}^{r'-1} \frac{1}{N} | f(b) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | f(b^{*}) \rangle_{B} \\ \frac{1}{N} | H_{3} \rangle = \left(\frac{1}{m} \sum_{m=0}^{r'-1} |mr+b\rangle \right)_{B} | H_{3} \rangle = \left(\frac{1}{N} | H_{3} \rangle = \left(\frac{1}{N} | H_{3} \rangle =$$

4. Now apply OFT to A:

$$|Y_{4}\rangle = QFT_{N} \quad \frac{1}{16} \sum_{\substack{n=0 \\ m \neq n}}^{n n + 1} \frac{1}{16} \sum_{\substack{n=0 \\ m \neq$$

Q: Before QFT, we had
143) =
$$\frac{1}{100} \sum_{m=0}^{100} |mr+b^*\rangle$$

Why not Measure 143)? Plot probability of outcome
143)

Q: Before QFT, we had

$$|4_{3}\rangle = \frac{1}{14_{3}} \sum_{m=0}^{m_{3}-1} |mr+b^{*}\rangle$$
Why not Measure $|4_{3}\rangle$? Plot probability of outcome

$$|8\rangle$$
Why not Measure $|4_{3}\rangle$? Plot probability of outcome

$$|8\rangle$$

$$|8$$

Period Finding Page 7

Classical Post Processing continued algorithm
1.
$$N_{ij}$$
 might not be an integer $J(y) \rightarrow N_{ij}$
 N_{ij} (only one possible
fraction warby, since
2. If not prime $(r=a\cdot b)$ $r< dn$)
 $J = a\cdot j'$
 $N_{ij} = N_{ij}' = looks like period is b.$
Solution
 $N_{ij} = N_{ij}' = looks like period is b.$
Solution
 $Measure twice:$
 N_{ij}', N_{ij}''
find least common multiple
Very likely to be
 $Test - f(o) = f(r)$