
CS302 - Problem Set 2

1. Pick (at least) one of the following topics and read the articles relating to the topic. Then
answer the questions below.

• Improved air traffic control:

– Impact of Improvements of Air Traffice Control

– Air Travel and Global Warming

• Improved Robot Control:

– Impact of Growing Robotics in China

– Infographic on Manufacturing Employment/Robot Use

– Study on Modern Workforce

Did the readings change your thoughts about the ethical implications of improved air traffic
control or improved robot control that we started thinking about in class? What stood out
to you in the articles about the ethical implication of this technology? Are there additional
aspects to these issues that the articles did not consider or glossed over, perhaps because of
bias in the authors’ perspectives? How comfortable would you be (from an ethical perspective)
implementing the relevant algorithm?

2. For the closest points problem, we argued we only needed to look at points with x-coordinates
that were within ±δ of the midline, where δ is the smallest separation found in either the
left half or the right half of points. In this problem, we consider how that analysis would
change if we were to calculate the distance between points differently. Decide what range of
x-coordinates away from the midline you should consider if we instead used

(a) The Minkowski distance: d(pi, pj) = (|xi − xj |q + |yi − yj |q)1/q, for q ∈ R+. This dis-
tance is what you get on curved spacetime like distances close to a black hole. (Techni-
cally all spacetime is curved, but we really only notice it when you get close to a massive
object.)

(b) The skewed distance: d(pi, pj) =
√

2(xi − xj)2 + (yi − yj)2. This distance would make
sense in a scenario where it is much harder to travel in the x-direction than in the y-
direction. For example, suppose to travel in the y-direction, you can get on highways,
but in the x-direction, you have to take local roads...like in Vermont! (Just try to get to
Maine from here!)

3. Please write a formal proof for the correctness of the closest points algorithm using strong
induction. You should combine all of the pieces we discussed in class into a proof that is
easy to read and understand. You may use figures (pictures) in your proof, but you should
clearly explain what is happening in the figure using English. The goal of this problem is
to clearly and concisely explain complex mathematical/algorithmic ideas in English. I would
recommend typing your proof so that it is easy to make edits. You should not turn in the
first version you write - make sure you reread and make changes for clarity and correctness.

1

https://middlebury.instructure.com/files/1178541/download?download_frd=1
https://middlebury.instructure.com/files/1178552/download?download_frd=1
https://www.youtube.com/watch?v=ENy2VZi21YU
https://middlebury.instructure.com/files/1191210/download?download_frd=1
https://middlebury.instructure.com/files/1178678/download?download_frd=1

For reference, my proof is about a page typed. In your proof, please reference to the following
algorithm:

ClosestPair(P) (where P is an array containing x-coordinates and y-coordinates of n points,
where no two points have the same x- or y-coordinate.)

Step 1: If |P | ≤ 3 use brute force search and return closest distance.

Step 2: Sort by x-coordinate into sets L and R

Step 3: δ = min{ClosestPair(L), ClosestPair(R)}
Step 4: Create Yδ, an array of points within δ of midline between L andR, sorted by y-coordinate.

Step 5: Loop through elements of Yδ, and calculate distance from each point to next 7 points,
keeping track of δ′, the smallest distance found.

Step 6: Return min{δ, δ′}

4. In 3 dimensions, the distance between two points pi = (xi, yi, zi) and pj = (xj , yj , zj) is
D(pi, pj) =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. In this problem, we’ll adapt our 2D Closest

Points algorithm to 3D points, and see if we can get the same runtime as 2D.

(a) I can describe the general idea of our 2D Closest Points algorithm as follows: “For a
small number of points, do a brute force search. Otherwise, divide the points into a
left and right half, and recursively solve to find the closest distance in each half. Now
we just need to check points that cross from one half to the other across the mid-line.
However, we only need to worry about a region close the this midline, and so we end up
being concerned with a line-like strip. So we use an approach similar to our algorithm
for Closest Points in 1D (a line) to deal with this strip.” Please give a similar description
for a divide and conquer algorithm for Closest Points in 3D. Please make an attempt at
this part before moving on to the next step.

(b) On the final page of the problem set is pseudocode to solve the 3D Closest Points problem.
What number should replace the “??” in Algorithm 2, line 5? (It should be a constant,
like “7.”) Please explain your reasoning. For this problem, choose the number that you
can most easily explain. Do not worry about finding the smallest number possible.

(c) Challenge: What is the smallest possible number you could choose in part (b)? Please
justify.

2

Algorithm 1: DivideFrontBack(P)
Input : Set of 3D points P .
Output: The distance of the closest pair of points

1 If |P | ≤ 3, brute force search;
2 Split points into front (F) and back (B) halves by z-coordinate around the midline zmid;
3 δ∗ = min{DivideFrontBack(F),DivideFrontBack(B)};
4 Create Pδ∗ , an array of points whose z-coordinates are within δ∗ of zmid.;
5 Return DivideLeftRight(Pδ∗ , δ

∗, zmid);

Algorithm 2: DivideLeftRight(P, δ∗, zmid)
Input : Set 3D points P , values δ∗ and zmid, such that all points in P have z-coordinate

within δ∗ of zmid
Output: The distance of the closest pair of points in P , or δ∗, whichever is smaller

1 If |P | ≤ 3, brute force search;
2 Split points into left (L) and right (R) halves by x-coordinate around the midline xmid;
3 δ = min{δ∗, DivideLeftRight(L, δ∗, zmid),DivideLeftRight(R, δ∗, zmid)};
4 Let Yδ be the set of points sorted by y-coordinate whose x coordinate is within δ of xmid and

whose z coordinate is within δ of zmid;
5 Loop through the elements of Yδ, checking the distance between each point and the next ??

points, and let δ′ be the smallest distance found;
6 Return min{δ, δ′};

3

