
CS302 - Problem Set 8

1. Selection(A, k) finds the kth smallest element of an array A. For example, if A =
[3, 11, 20, 6, 7, 38] and k = 3, then Selection(A, k) returns 7. Here is pseudocode for
a divide and conquer algorithm for Selection. Note we index A starting at 1, not 0.

Algorithm 1: Selection(A, k)
Input : An array A of n integers indexed starting at 1 and an integer

k ∈ {1, . . . , n}
Output: The kth smallest element of A.

1 ChoosePivot(A);
2 Run Partition on elements of A using chosen pivot;
3 Let p be the index of the pivot after Partition;
4 if p = k then
5 return A[p];
6 end
7 if p < k then

// Everything larger than the pivot, including the kth
element, is to the right of p

8 return Selection(A[p + 1 : n], k − p);

9 else
// Everything smaller than the pivot, including the kth

element, is to the left of p
10 return Selection(A[1 : p− 1], k);

11 end

(a) Before analyzing the divide and conquer algorithm for Selection, think about the
“brute force” approach. Describe in words or using pseudocode an algorithm that
solves this problem using as simple a method as possible, and give a big-O bound
on the runtime if the input array has size n.

(b) What is a big-O bound on the runtime of Algorithm 1 (the divide and conquer
approach) if ChoosePivot somehow always chooses the pivot to be the median
value of the array, and the input array has size n.

(c) What is a big-O bound on the runtime of Algorithm 1 (the divide and conquer
approach) if ChoosePivot somehow always chooses the pivot to be the smallest
element the array, and the input array has size n.

1

(d) Suppose ChoosePivot chooses a pivot uniformly at randomly from the elements of
A. [For a challenge, without turning the page, come up with an expression (that
might involve some unsimplified summations) for the number of comparisons that
are made over the course of the algorithm. For an extra challenge, bound and
simplify the summation terms. Otherwise, turn the page for more guidance.]

2

i. Please describe in words the sample space of this problem.

ii. Let B be the original array that was input to Selection. As in class, let zi
be the ith smallest element of B. Let Xij, for i < j, be a random variable
that is the number of times zi and zj are compared over the course of the
algorithm. Explain why Xij is an indicator random variable.

iii. What is the probability of zi and zj being compared if we are trying to find
the kth smallest element, and k ≤ i?

iv. What is the probability of zi and zj being compared if we are trying to find
the kth smallest element, and j ≤ k?

v. What is the probability of zi and zj being compared if we are trying to find
the kth smallest element, and i < k < j?

vi. Use linearity of expectation, and properties of the expectation value of indi-
cator random variables to create an explicit expression involving sums that
gives the average number of comparisons done over the course of the algo-
rithm. (See hint on last page for a key trick.)

vii. (Challenge) Analyze the sums from the previous part to get a runtime of
O(n), which should be better than your brute force approach!

2. You run a plant that produces sheets of aluminum alloy, and then you cut them to size
for customers. Your machine produces rectangular sheets of dimension Q×R, and you
can cut any sheet into two smaller sheets by making a vertical or horizontal cut. So
for example, if you have a 2 × 4 sized piece, you have the following options that you
could produce from a single cut:

• Two 1× 4 pieces.

• Two 2× 2 pieces.

• A 1× 2 and a 2× 3 piece.

Say you decide to make the cut that produces a 1 × 2 and a 2 × 3 piece. You could
then cut the 1 × 2 piece into two 1 × 1 pieces, and the 2 × 3 piece into a 2 × 1 piece
and a 2× 2 pieces, and so on.

You can also rotate pieces (so a 2× 3 piece is the same as a 3× 2 piece).

Suppose you produce n different sized products, where product i has dimensions
xi × yi, and you can sell product i for vi dollars. (For example, perhaps product 1 is
a 2 × 2 piece that you can sell for $2, and product 2 is a 3 × 5 piece that you can
sell for $3 dollars.) You can sell multiple copies of the ith product if you can produce
multiple pieces of that size from your original sheet. Assume Q, R, xi, yi, and vi for
i ∈ {1, 2, . . . , n} are positive integers. You will design an algorithm that figures out
your maximum profit among any possible sequence of horizontal/vertical cuts.

(a) Please provide pseudocode for a dynamic programming algorithm that outputs
your maximum profit. (Note: your code doesn’t have to output how you should

3

actually divide the piece, just the profit.) The input to your algorithm should be
(Q,R, x, y, z) where Q and R are the size of the piece, array x contains the values
xi, array y contains the values yi, and array v contains the values vi.

(b) Explain why your algorithm is correct. (You don’t need to write a full proof, but
you should describe the logic behind the recurrences that you developed to create
your algorithm.)

(c) What is the runtime of your algorithm in terms of Q, R, and n?

(d) Explain briefly how you would modify your algorithm to tell you whether you
should divide the current sheet, and if so, where you should make the cut.

3. Approximately how long did you spend on this assignment (round to the nearest hour)?

4

Hints!

1a. The first step of your algorithm should be to sort the array!

1b. Use the master method! Be careful about the number of recursive calls...

1c. Go through a couple levels of recursion and try to figure out the pattern. (Use the
iterative method of solving recurrence relations.)

1diii. In class, we were concerned with the set {zi, zi+1, . . . , zj}. Now we are inter-
ested in a different Which is the relevant set? From z1 to zi? From zk to zj? From zk
to zi? From zk to zn? Think about when the “decision” point occurs that determines
whether zi and zj are compared or not, and what range of values are involved.

1dvi. After linearity of expectation, you should get a term like:

n−1∑
i=1

n∑
j=i+1

E[Xij] (1)

to add all terms with i < j.

We can divide this sum into parts that correspond to the three cases of the earlier
parts of the problem, where case iv is the first sum, case v is the second sum, and case
iii is the last sum:

n−1∑
i=1

n∑
j=i+1

E[Xij] =
k−1∑
i=1

k∑
j=i+1

E[Xij] +
k−1∑
i=1

n∑
j=k+1

E[Xij] +
n−1∑
i=k

n∑
j=i+1

E[Xij]. (2)

2a. Usually we only have a couple options to check, but in this case we have lots
of options to check. So you’ll need a for loop to go through all of the possible options.

2c. In this case, we don’t know what is the biggest term, Q, R, or n. So if you
have a term like O(Q + R + n) we can’t simplify any further except to rewrite this as
O(max{Q,R, n}).)

5

