
CS302 - Problem Set 2

1. (a) In our first attempt at calculating the runtime of Closest Points, we got the following
recurrence relation for the runtime:

T (1) = O(1), T (n) = 2T (n/2) +O(n log n). (1)

We can’t use the tree method formula that you came up with in the last problem set to
evaluate this recurrence relation because there is no constant d such that nd = n log n.
However, if you go through the same series of steps that you went through in PSet 1,
Problem 1, with O(nd) replaced with O(n log n), (and using a = 2 and b = 2) you can
evaluate this recurrence relation. Please do this. You will likely need to use properties
of logs and the arithmetic series formula:

n∑
i=1

i = n(n+ 1)/2. (2)

(b) After using a preprocessing trick, the runtime was described by the following recurrence
relation:

T (1) = O(1), T (n) = 2T (n/2) +O(n). (3)

For this, we can use the tree method formula from Problem Set 1, Problem 1. Use that
formula to evaluate the runtime. (You do not need to do the full derivation again; you
can just use your final result.)

(c) Please comment on how much we gain by the preprocessing trick. Is the added com-
plexity worth it?

2. Please write a formal proof for the correctness of the closest points algorithm using strong
induction. You should combine all of the pieces we discussed in class into a proof that is
easy to read and understand. You may use figures (pictures) in your proof, but you should
clearly explain what is happening in the figure using English. The goal of this problem is
to clearly and concisely explain complex mathematical/algorithmic ideas in English. I would
recommend typing your proof so that it is easy to make edits. You should not turn in the
first version you write - make sure you reread and make changes for clarity and correctness.
For reference, my proof is about a page typed. In your proof, please refer to the following
algorithm:

ClosestPair(P ) (where P is an array containing x-coordinates and y-coordinates of n points,
where no two points have the same x- or y-coordinate.)

Step 1: If |P | ≤ 3 use brute force search and return closest distance.

Step 2: Sort by x-coordinate into sets L and R
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Step 3: δ = min{ClosestPair(L), ClosestPair(R)}
Step 4: Create Yδ, an array of points within δ of midline between L andR, sorted by y-coordinate.

Step 5: Loop through elements of Yδ, and calculate distance from each point to next 7 points,
keeping track of δ′, the smallest distance found.

Step 6: Return min{δ, δ′}

3. In 3 dimensions, the distance between two points pi = (xi, yi, zi) and pj = (xj , yj , zj) is
D(pi, pj) =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. In this problem, we’ll adapt our Closest

Points algorithm to 3D points.

(a) I can describe the general idea of the 2D Closest Points algorithm as follows: “For a
small number of points, brute force search. Otherwise, divide the points into a left and
right half, and recursively solve to find the closest distance in each half. Then check a
vertical, line-like strip for close points that cross the midline using an approach that is
similar to Closest Points on a line.” Please give a similar description for a divide and
conquer algorithm for Closest Points in 3D. Please make an attempt at this part before
moving on to the next step.

(b) On the final page of the problem set is pseudocode to solve the 3D Closest Points problem.
What number should replace the “??” in Algorithm 2, line 5? (It should be a constant,
like “7.”) Please explain your reasoning. For this problem, choose the number that you
can most easily explain. Do not worry about finding the smallest number possible.

(c) Challenge: What is the smallest possible number you could choose in part (b)? Please
justify.

(d) What is the runtime of my algorithm?

(e) Comment on the runtimes of 2D vs 3D closest points.

4. Suppose you have a line graph G on 6 vertices ((v1, v2, v3, v4, v5, v6), connected in that order)
with the following vertex weights:

w(v1) = 3 w(v2) = 7 w(v3) = 10 w(v4) = 5 w(v5) = 4 w(v6) = 5

(a) Let Gi be the line graph on the first i vertices with the same weights as above. Let
S(Gi) be the max-weight independent set on Gi. What are S(G1), S(G2), . . . , S(G6)?
(Note: your answers should be sets.)

(b) For i = 3, 4, 5, 6, verify the recurrence relationship we discussed in class: that if vi ∈
S(Gi), then S(Gi) = S(Gi−2) + vi while if vi /∈ S(Gi), then S(Gi) = S(Gi−1).

5. Approximately how long did you spend on this assignment (round to the nearest hour)?
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Algorithm 1: DivideFrontBack(X,Y, Z)
Input : X, Y , and Z: Lists of n points sorted by x-, y-, and z-coordinate respectively
Output: The distance of the closest pair of points

1 If |X| ≤ 3, brute force search;
2 Split points into front and back halves by z-coordinate around the midline zmid, to get XF ,
XB, YF , YB, ZF , and ZB;

3 δ∗ = min{DivideFrontBack(XF , YF , ZF ),DivideFrontBack(XB, YB, ZB)};
4 Create Xδ∗ , Yδ∗ and Zδ∗ , which are sorted arrays of points whose z-coordinates are within δ∗

of zmid.;
5 Return DivideLeftRight(Xδ∗ , Yδ∗ , Zδ∗ , δ

∗, zmid);

Algorithm 2: DivideLeftRight(X,Y, Z, δ∗, zmid)
Input : X, Y , and Z: Lists of n points sorted by x-, y-, and z-coordinate respectively
Output: The distance of the closest pair of points

1 If |X| ≤ 3, brute force search;
2 Split points into left and right halves by x-coordinate around the midline xmid, to get XL,
XR, YL, YR, ZL, and ZR;

3 δ =
min{δ∗, DivideLeftRight(XL, YL, ZL, δ

∗, zmid),DivideLeftRight(XR, YR, ZR, δ
∗, zmid)};

4 Let Yδ be the set of points sorted by y-coordinate whose x coordinate is within δ of xmid or
whose z coordinate is within δ of zmid;

5 Loop through the elements of Yδ, checking the distance between each point and the next ??
points, and let δ′ be the smallest distance found;

6 Return min{δ, δ′};
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