SKIMMED

Focus so far:
(informal) $P=$ problems that can be solved in
Polynomial $O\left(n^{k}\right)$ time, k a constant,
Time
if description of input is size n (bits)
$k=10^{6}$ not very efficient... but almost all problems in P actually have $k=1,2,3,4$. (like most problems in class.) $O(n+m), O(n m)$
$O(n \log m)$

probably $\left(\begin{array}{l}\text { probably } \\ \text { not in } P \text {, but can solve } \\ \text { in exponential time }\end{array}\right)$
would like to distinguish
between these Problem (no computer can figure out, even with unlimited resources)
Motivates: Nondeterministic Polynomial Time
NP (informal) = set of problems where if input is size n,

- Solution is size $O\left(n^{k_{1}}\right)$
- Can verify if solution is correct in $O\left(n^{k_{2}}\right)$ time
ex: Hamiltonian Path
Input: Adjacency list of directed, unweighted graph $G=(v, E) ; \quad s, t \in V . \quad|v|=n,|E|=m$

Output: If it exists, a path from s to t that goes through each vertex once.

Another NP problem:
3SAT: Given CNF formula of $x_{1}, x_{2}, \ldots x_{n}$ and negations
AND of ORS
where each clause has at most 3 terms, is there a Satisfying assignment?

Example input:

Clauses:

$$
(\underbrace{x_{1} V x_{3} V \bar{x}_{4}}_{c_{1}}) \wedge(\underbrace{\bar{x}_{1} V \bar{x}_{2} V \bar{x}_{5}}_{c_{2}}) \wedge(\underbrace{\bar{x}_{3} V x_{5}}_{c_{3}})
$$

Output: $x_{1}=1, x_{2}=0, \ldots$
Most people believe NP-Hard problems take exponential time to solve
S.KIMMEL

Verify HAMPATHENP

\# of vertices vertex nam in patna

- Time to verify:
$O\left(n^{2}\right) \leftarrow$.checking each edge is valid takes time $O(n)$ - need to do n times
$+O(n) \leftarrow$.maintain array of visited vertices to check all visited exactly once.

HAMPATHENP

Hamitorian cycle is hardest problem in NP

What does this mean? It can be used to solve any other problem in NP

Polynomial Reduction
Problem π_{1} reduces to problem π_{2} if

To show 3SAT reduces to HAMPATH:
$\rightarrow X=$ CNF formula
\rightarrow Input converter uses x to create x^{\prime}, an Adj. List
\rightarrow Output HAMPATH (x^{\prime}) tell you if Ham path exists
\rightarrow Output converter uses this info to decide if CNF formula is satisfiable

SKIMMER
Q. If $\pi_{2} \in P$ and π_{1} reduces to π_{2} then
A) $\pi_{1} \in P$
(B) $\pi_{1} \notin N P$
C) We don't have enough information
$\pi_{1} \in P$ because need to run π_{2} poly \# of times, takes poly time, and do poly time other steps \Rightarrow poly time.
π_{1} reduces to π_{2} implies π_{2} is harder (if can do π_{2}, than π_{1} can do π_{1})
S.KiMmel

Can show $\forall \pi \in N P, \pi$ reduces to $H A M P A T H$

- HAMPATH is NP-Hard (every problem in NP reduces
- Also $\frac{\text { Hampata } \in N P}{\text { HAMPATH }^{2}}$ to it)

HAMPATH is NP-complete

$$
\Pi \in N P \wedge \pi \in N P-\text { Hard }=N P \text {-COMPLETE }
$$

We will take as fact that 3SAT is NP-COMPLETE

Important Skill in algorithm proving π is NP -Hard Why?

- Won't spend time trying to find efficient solution
- Look up existing alg for NP-hard problems
- Use special structure (average case might be easy)
$\underset{\substack{\text { Strategy for proving } \\ T_{\text {is }} \text {-Hard }}}{ } \Rightarrow$ Reduce 3SAT to π
(π harder than $3 S A T) \&($ SSAT harder than $)$
$\Rightarrow \pi$ is harder than NP
Prove: Sat reduces to Hampath

1) Create X^{\prime} (input to HAMPATH) using x (input to SAT)
2) Show takes poly time to do reduction
3) Show $\begin{gathered}\text { SAT }(x) \\ \text { has } \\ \text { solution }\end{gathered} \quad \begin{gathered}\text { HAMPATH } \\ \text { has } \\ \text { solution }\end{gathered}$

SKIMMED

Q: How many Hamiltonian Paths are there from s to t without v/ with v?
A) 1,0
B) 1,1
C) 1,2
D) 2,1

