
CS302 Midterm 1 Review

1. Create a loop invariant for the loop at Line 7 that will allow you to prove that if A1 and A2

are sorted arrays which together contains all elements of A, then the output of the algorithm
is A, sorted. Write termination, base case, and maintenance conditions.

Algorithm 1: MergeSort(A)
Input : Integer array A of length n
Output: Sorted array
// Base Case

1 if n == 1 then
2 return A;
3 end
// Divide and Conquer

4 A1 = MergeSort(A[1 : n/2]);
5 A2 = MergeSort(A[n/2 + 1 : n]);
// Combine

6 p1 = p2 = 1;
7 for i=1 to n do
8 if A1[p1] < A2[p2] then
9 A[i] = A1[p1];

10 p1++;

11 else
12 A[i] = A2[p2];
13 p2++;

14 end

15 end
16 return A

Solution Invariant:

(a) A[1 : i− 1] contains all elements of A1[1 : p1 − 1] and A2[1 : p2 − 1].

(b) All elements in A[1 : i − 1] are less than or equal to any elements in A1[p1 : end] and
A2[p2 : end]

(c) A[1 : i− 1] is sorted.

Termination: At termination, i = n + 1, So A is a sorted array containing all n elements
in A1 and A2.

1



Base Case: Initially A[1 : 0], A1[1 : 0] and A2[1 : 0] contain no elements, so the conditions
are trivially true.

Maintenance: At the beginning of the loop, we can assume, A[1 : i − 1] contains all
elements of A1[1 : p1 − 1] and A2[1 : p2 − 1] (i). This means both p1 and p2 are pointing at
new elements that are not yet in A (or are off the end of their array), and by condition (ii),
these new elements are larger than or equal to anything that is currently in A. Thus if we
put the smaller one into A, and shift the corresponding p1 or p2 over, all of the conditions
will remain true.

2. Suppose you have n events, each with a start time si and end time fi, for i ∈ {1, . . . , n}.
Unfortunately, you only have one auditorium, and you can’t schedule conflicting events (events
where a start time of one is between the start time and end time of another.) We would like
to maximize the number of events that are held. Show that a greedy algorithm that always
chooses the next event that has the earliest possible starting time is optimal. You may assume
that there is exactly one optimal solution (to make the exchange argument the single exchange
type.)

Solution Let σ be the greedy schedule, and for contradiction, suppose σ∗ is the optimal
schedule. Let i be the first event where σ∗ differs from σ. This means that σ∗ choose the ith
event to be one event, while σ chose a different event with a shorter ending time. Then we
can create a new schedule σ∗′ that is the same as σ∗ except with the ith event the event that
σ chose, rather than the event σ∗ chose. It is possible to make this scheduling change because
σ was able to schedule the event, so it doesn’t conflict with any earlier events, but because its
ending time is earlier than the event that σ∗ chose, it doesn’t conflict with any later events
in σ∗. But now σ∗′ has the same number of events scheduled as σ∗, a contradiction, because
we said there is exactly one optimal solution.

2


