S.KIMMEL

Scheduling Discussion

$$\frac{Suu | Man | Tues | Thue - Fri}{Burs / Burs /$$

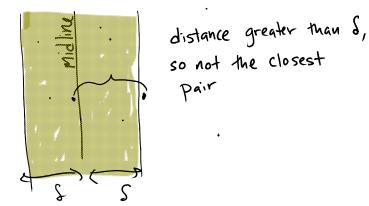
Divide + Conquer Example:
Closest Pair Problem:
(K,1))*

$$P_3 (Kx,3^n)$$

 $P_3 (Kx,3^n)$
 $P_3 (Kx,3^n)$
 $P_2 (X,1)^n)$
 $P_3 (Kx,3^n)$
 $Distance between 2 points:
 $J(P_i, P_j) = \overline{((X_i - X_j)^2 + (Y_i - Y_j)^2)^2}$$

Applications:• Air traffic control• Creating 3-D images out of stered
images (matching closest regions that
are the same)• Robotics• Detecting repeated sequences of DUA
• Detecting repeated sequences of DUA
• Geography Info Systems: detect
doubled boundariesQ. What is the runtime of an exhaustive search algorithm for closest
Pair on n points?
$$O(n)$$
A) $O(n)$ $O(n^2)$ $O(2^n)$ SNeed to check each pair. $\binom{n}{2} = O(n^2)$ pairs. Colculating Jistance
for each pair is $O(1)$.

S.KIMMEL


.

S.KIMMEL

4. Combine: midline als. P к If overall closest pair is on either side J. But in trouble if closest pair crosses

Let S be
$$\min \{ (P(L), (P(R)) \}$$

Claim A: Only need to look at a region
within S of the midline.

Otherwise: Contradiction

If squint, looks like points on a line! 1. Sort 2. For-loop to look at nearest Nighbors