
Subset Sum

Input: S= {x, ..., x, x, 3, t

ex: 5= 1,2,2,6,7,10 6,7,2

Goal: Show Subset-Sum is NP-Hard

Strategy: Prove 3-SAT reduces to subset sum

2. Show f, f' take Polynomial time

S-S has soln <>> 3-SAT has solution

3-SAT is NP Hard, SO if we show 3-SAT reduces to S-S, this Means S-S is even harder than 3-SAT

Input: X, ... Xn, variables, C, ..., Cm clauses each involving & 3 variables

Output: assignment that satisfies all clauses

clause: $(X_1 \vee \overline{X}_2 \vee \overline{X}_3)$

#'5	in Set:	N+ M	digits		
	123	M	c ₁ c ₂	Cm	
$\begin{array}{ccc} \chi_{1} \rightarrow & \psi_{1} \\ \chi_{1} \rightarrow & \chi_{1} \end{array}$	100	6 O	0 0	0	$C_1 = \left(\times_1 \vee \overline{\times}_2 \vee \overline{\times}_3 \right)$
$\chi_{c} \rightarrow \omega_{2}$	010	6	0	0	
$X_2 \rightarrow y_2$ $X_3 \rightarrow \omega_3$	0 (0		0	0	
$\overline{X}_3 \rightarrow Y_3$	001:	0	•	0	
\tilde{c} , $\{$					
$\tilde{\zeta}_{z}$			10	- 0	
~ {				. ()	
		7			
(-	3 3	- 3	_

$$\Rightarrow Include \begin{cases} w_i & \# & \text{if} & X_i = 1 \\ y_i & \# & \text{if} & \overline{X}_i = 0 \end{cases}$$

Then every clause digit has at least 1, can add 2 more from \tilde{c} ; to get to 3.

· If S-S has Solution

$$\rightarrow$$
 one of X_i, \overline{X}_i is in subset