Shortest Paths
Input: Graph $G=(V, E), \quad s \in V$
Output: $\forall \quad v \in V, l(v)=$ shortest path from s to V
 $l(v)=\infty$ if s, v not connected

Applications: Bacon \#
Linked in Degree
Idea, explore layers.
$l[v]=\infty \quad \forall v \in V / /$ will store shortest paths
$E_{x}[v]=$ Fake $\forall v \in V \quad / /$ mark True when "explored"
$A=\{ \}$;
What type of data structure is A?

$$
\begin{aligned}
& A \cdot \operatorname{add}(s) \\
& l[s]=0 \\
& \operatorname{Ex}[s]=\text { True }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& QUEUE: FIFO } \\
& \text { or STACK: FILO }
\end{aligned}
$$

while (A is not empty)
Without red: BFS, with red: BFS for shortest

$$
V=A \cdot P \circ P
$$ path

For each edge (v, w)

$$
\text { If }(E x[\omega]=\text { false }) \quad \text { A. add }(\omega) ; E \times[v] \text {-true; } l[\omega]=l[v]+1 \text {; }
$$了

\}
This is Breadth First Search - Slowly move away in layers
S.KIMMEL
ex:

$$
A\left[\begin{array}{l}
\phi \\
\alpha \\
b \\
c \\
d \\
d \\
e
\end{array}\right]
$$

l| $S=0$ | T |
| :--- | :---: |
| $a=1$ | F |
| $b=1$ | F |
| $\frac{c=2}{}$ | F |
| $\frac{d=2}{e=3}$ | F |
| | |
| | F |

Now need to figure out...

- is it correct?
- What is the runtime

Q: What strategy can you use to prove correct? Discuss...
Q
What is runtime of BFS using adjacency list if n is total \# vertices, m is total \# edges, n_{s} is \# of vertices reachable form s, m_{s} is \# edges reachable from s. A. $O\left(m_{s}\right)$

$$
B \quad O\left(n+m_{s}\right)
$$

C. $O\left(n_{s} m_{s}\right)$
D. $O\left(n+n_{s} m_{s}\right)$

Answer: B.
1: initializing $\operatorname{Exp}[v] \quad \forall v \in V$ takes time $O(n)$
2. (After mitialzation)

Seems like should be $w_{s} m_{s} b / c$ while loop runs $O\left(n_{s}\right)$ times, for loop runs $O\left(\mathrm{~m}_{s}\right)$ times. Can do better!
\Rightarrow Inside while loop, do a constant \# of operation for each edge that is examined. We only examine edges of vertices that end up in queue. Each edge only has two vertices connected to it. Each vertex can only be in queue once. (Only get to edges connected to s.) $\Rightarrow \sim 2 m_{s}$ operations

What kind of algorithm is BFS shortest path?
Greedy
Local Search
-look for best choice in nearby area
Dynamic - Since stores solutions to previous problems, one could view as dynamic... but most textbooks would NOT describe as dynamic

