To Create D. P. (dynamic programming) algorithm:

- II. Think of form of optimal solution.
 - · WMIS on line: Vn & S or n & Sn
- 12. How do you write in terms of optimal solution to smaller problem! (ii)

- [3.] Create recurence relating value of optimal solution to smaller Solutions.

Gic

- $A(k) = \max \left\{ A(k-1) , A(k-2) + \omega_k \right\}$ weight of MW15 on
- Store values in an array using for 160p
- Work backwards through array to reconstruct aphmal solution

S.KIMMEL	
More Dynamic Programming F	Practice
Sequence Alignment	
Problem: How similar are 2 DN	4 Seguences?
Useful for: - determining closeness o - determining when spe	
DNA changes in specific way	js .
GATACA - GATTACA	(insertion)
\ GTACA	(deleton)
) GAGACA	(mutation)
Ex: How similar are	

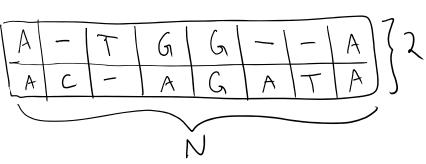
GATTACA and GAGACA ?

- Good: Letters match
- Bad: Letter matched with gap
- Bad: Letlers mismatch

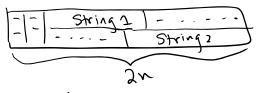
If mostly match, DNA strings are similar!

Sequence Alignment

Input: 2 strings over {A,C,T,G} of length n, m (x,y)


Output: Alignment that minimizes penalties

Pgap = penalty each time letter matched w/ gap


Pmm = " wismatched

Alignment \(
15

2xN array; containing; lexxrs gaps

In optimal solution, put double gaps at beginning

