
CKIMMEL
Come get graded quiz!
Amouncements
· Self grade & reflection due Wed (more on this in class)
Honor Code Discussion: TLDR: It's important. Make sure you know it now so no SpIC Grade & Reflection problems later.
Self Grade & Reflection problems later.
Rubric: Validity: logic OK? Readability: Easy to read? Concise: More complicated than needs to be?
Provide a point score for each category -> V = X R = y C = Z

Sample self-grade Activity...

Also

- · Reflection see resources on website for worksheet
- · Where to find solutions CANVAS, "Files"
- · Timing ~30 min (at most 1 hour)

- · Used to prove correctness of recursive algorithms where problem size decreases by 1 in recursion
- In Divide & (onquer if

 Size goes from $N \to M$, instead,

 let $2^{M} = N$, then problem

 Size decreases from $2^{M} \to 2^{M-1}$ in recursion. So do induction

 on M, not N!

Better for Divide & Conquer:

Strong Induction

Step 2: Show how to get to

hth rung if all rungs

k such that

n>k? base are attainable

Step 1: Show how

to get on 1st rung

If subproblems are not always exactly a factor of 2 smaller, this approach is better. Only need to show subproblem is smaller than 1, but larger than the base case