SKIMMER
What if you really need to Solve an NP-COMPLETE problem.

3-SAT

- Strategy 1: There are 2^{n} possible assignments.

Check each one.
Time $O\left(2^{n}\right)$
-Strategy 2: Schöning's Algorithm (Local Search)

1. Guess a sola
$\rightarrow 2$. Pick a clause that is not satisfied
2. Flip value of one variable in that clause
3. Repeat from step 2, A times.
4. Repeat

After $O\left(\left(\frac{4}{3}\right)^{n}\right)$ steps, finds a solution if one exists with high probability

Let z old be assignment before variable is flipped $z_{\text {new }}$ after

Q: Which is always true of the new z ?
A) $Z_{\text {new }}$ satisfies more clauses than $z_{\text {old }}$
B) $z_{\text {new }}$ satisfies clause k
C) A \& B are both always true
$D)$ Neither A nor B is true

Clause is only not satisfied if all 3 variables are false, so flipping one will make true
$Z_{\text {new }}$ can satisfy fewer clauses than $Z_{\text {old }}$! Why
Strategy to Solve NP problem: convert to 3SAT solve using Schöning's Alg. Time $O\left(\left(\frac{4}{3}\right)^{n}\right)$

