
CS302 - Problem Set 8
Due: Monday, Nov 13

1. Suppose you run a company with two offices, one in Washington and the other in San Fran-
cisco, California. You always spend the whole week in one location, but each weekend, you
decide whether to fly to the other office. In week i, you can make Wi dollars if you are in
Washington, and Ci dollars if you are in San Francisco. Each flight from one office to the
other costs $1000. Suppose you are give the lists W1,W2, . . . ,Wn and C1, C2, . . . , Cn. Also
suppose you are in Washington initially, and need to be back in Washington after the nth
week. What schedule will maximize your profits? (Note your solution should not just give
the maximum profit, but should return a schedule.)

(a) [6 points] (*) A greedy algorithm would always choose to work in the office with the
larger profit that week. Give a counter example showing that this strategy is not always
optimal.

(b) [6 points] (**) Think about designing a dynamic programming algorithm. In your
algorithm, you should first construct an array, and then work backwards through the
array. Explain what values you will put in the array, provide a recurrence relation that
you can use to fill out the array, and explain why this relation is correct. (You don’t
need to give a formal proof.)

(c) [9 points] (**) Give psuedocode for a dynamic programming algorithm.

(d) [11 points] (**) Use a loop invariant to prove that when you work backwards through
the array to construct the optimal solution is correct.

(e) [3 points] (*) What is the runtime of your algorithm?

2. Suppose you are given an array A of size n. Then the longest ascending subsequence of
A is a the longest list A[i1], A[i2], A[i3], . . . , A[ik] such that i1 < i2 < i3 < · · · < ik, and
A[i1] ≤ A[i2] ≤ · · · ≤ A[ik].

(a) (**) Describe a dynamic programming algorithm that runs in O(n2) time and outputs
the longest ascending sequence.

(b) (***) Describe a dynamic programming algorithm that runs in O(n log n) time and
outputs the length of the longest ascending sequence. (It is also possible to output the
longest ascending sequence itself in O(n log n) time, so feel free to think about that too.)

3. A scheduling problem. Suppose you have n events, each with a start time si and end time
fi, for i ∈ {1, n}. Unfortunately, you only have one auditorium, and you can’t schedule
conflicting events (events where a start time of one is between the start time and end time
of another.) We would like to maximize the number of events that are held. For each of the
following greedy algorithms, either provide an example where the algorithm does not perform
optimally, or prove that it gives an optimal algorithm. (For the correctness proof, try using
an exchange algorithm similar to the one for the scheduling problem we looked at in class

1

where not all values are distinct, but base the progression on selection sort rather than bubble
sort.) (In each case, ties can be broken using any method.) [3 points (*) for each counter
example, 11 points (**) for proof of correctness.]

(a) At each iteration, pick the remaining event with the earliest start time.

(b) At each iteration, pick the remaining event that is the shortest (fi − si is smallest.)

(c) At each iteration, pick the remaining event with the earliest finish time.

(d) At each iteration, pick the remaining events with the fewest conflicts with other remain-
ing events.

2

