
CS302 - Problem Set 2
Due: Monday, Sep. 25. Must be uploaded to Canvas before the beginning of class.

Please be familiar with the sections of the syllabus on problem sets and honor code before
starting this homework. You may also want to look at the grading rubrics.

1. Proof Practice

(a) [11 points] Prove that Algorithm 1 multiplies a non-negative n and an integer b.

Algorithm 1: Mult(n, b)
Input : Non-negative integer n, and integer b
Output: n× b
/* Base Case */

1 if n == 0 then
2 return 0
3

4 else
// Recursive step

5 return b+ Mult(n− 1, b)

6 end

(b) [11 points] Prove Algorithm 2 for binary search is correct.

Algorithm 2: BinarySearch(A, V, s, f)
Input : Sorted increasing array A, a value V , a starting index s, and a final index f
Output: Index i such that A[i] = V , and s ≤ i ≤ f or 0 if no V exists in A with index

betwen s and f inclusive.
/* Base Case */

1 if f − s == 0 then
2 if A[s] == V then
3 return s
4 else
5 return 0;
6 end

7 else
// Recursive step

8 mid = b(f + s)/2c
9 if A[mid] < V then

10 return BinarySearch(A, V,mid+ 1, f)
11 else
12 return BinarySearch(A, V, s,mid)
13 end

14 end

1

2. 3-D Closest Points

In this problem, you will design an algorithm for the closest points problem in 3D. That
is, suppose you are given an array of n points, and for each point pi, we are given values
(xi, yi, zi) which are its x- y- and z-coordinates. The distance between two points is given by
d(pi, pj) =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. We would like to find the distance between

the pair of closest points.

In the next few paragraphs and questions, I will lead you through one approach to this
problem. However, I encourage you to take some time to try to come up with some strategies
on your own first.

Let CP 3D(X,Y, Z) be an algorithm that takes as input 3 arrays X,Y, Z, each of which
contains the same n points P = {p1, . . . , pn}, but sorted by x-, y-, and z-coordinates respec-
tively. CP 3D(X,Y, Z) outputs the distance between the closest pair of points. Note: the
output is not the pair of points, but the distance!

Let CP Almost2D(X,Y, Z, δ) be an algorithm that takes as input a real positive number δ,
and 3 arrays X,Y, Z, each of which contains the same n points P = {p1, . . . , pn}, but sorted
by x-, y-, and z-coordinates respectively. P is assumed to have the property that all points
have z-coordinate values between z̄−δ and z̄+δ, for some real number z̄. (That is, they are all
in a narrow region within distance δ of the plane at z = z̄.) Furthermore, if two points pi and
pj both have z-coordinates on the same side of z̄, then d(pi, pj) ≥ δ. CP Almost2D(X,Y, Z, δ)
returns the distance between the closest points in P .

You may assume that all x- y- and z-coordinates for all points are distinct.

(a) [9 points] Write psuedocode for an algorithm for CP 3D that uses CP Almost2D as a
subroutine. (You do not need to write psuedocode for CP Almost2D.)

(b) [11 points] Consider the pseudocode in algorithm 3 for CP Almost2D. Prove this algo-

2

rithm is correct.

Algorithm 3: CP Almost2D(X,Y, Z, δ)
Input : 3 arrays X,Y, Z, each of which contains the same n points P = {p1, . . . , pn}, but

sorted by x-, y-, and z-coordinates respectively. Real number δ > 0, such that P
satisfy the conditions relative to δ laid out above.

Output: The distance between the closest pair of points in P .
/* Base Case */

1 if |P | ≤ 3 then
2 minDist =∞
3 for pi, pj ∈ P, i 6= j do
4 if d(pi, pj) < minDist then
5 minDist = d(pi, pj)
6 end

7 end
8 return minDist

9 else
// Divide and Conquer

10 Let x̄ divide the points in half by x-coordinate
11 Create ZL, XL, YL, (sorted arrays containing the “left” half, those with xi < x̄)
12 Create ZR, XR, YR,(sorted arrays containing the “right” half, those with xi > x̄)
13 δ′ = min{CP Almost2D(XL, YL, ZL, δ), CP Almost2D(XR, YR, ZR, δ)}

// Combine

14 Create Yδ′ , which is a sorted array containing those points in P with x-coordinate within
δ′ of x̄.

15 Let pi be the ith point in Yδ′ .
16 for i = 1 to |Yδ′ | − 31 do
17 for j = 1 to 31 do
18 if d(pi, pi+j) < δ∗ then
19 δ∗ = d(pi, pi+j)
20 end

21 end

22 end
23 return δ∗

24 end

3

