SKIMMER
P, NP, and Complete Problems
Focused on problems that can be solved efficiently.
(informal) $P=$ problems that can be solved in
if description of input is size n (bits)
$k=10^{6}$ not very efficient... but almost all problems in P actually have $k=1,2,3,4$. (like most problems in class.)
e.g. Adjacency list: Size: $O((n+m) \log n) \Rightarrow$ graph alg runtime $O(n+m), O(n m)$
$O(n \log m)$

All Problems
(not in P, but can solve in exponential time)

Halting Problem (no computer can figure ont, even with unlimited resources)
Motivates: Nondeterministic Polynomial Time
NP (informal) $=$ set of problems where

- Solution is size $O\left(n^{k_{1}}\right)$
- Can verify if solution is correct in $O\left(n^{k_{2}}\right)$ time If input is size n.
ex: Hamiltonian Path
Input: Adjacency List of directed, unweighted graph $G=(V, E) ; \quad s, t \in V . \quad|V|=n,|E|=m$

Output: If it exists, a path from s to t that goes through each vertex once.

SKIMMER
Discuss: -What is size of solution:

vertex nam in patna

- What is time to verify
$O\left(n^{2}\right) \leftarrow$.checking each edge is valid takes time $O(n)$
- need to do n times
$+O(n) \leftarrow$ maintain array of visited vertices to check all visited exactly once.

HAMPATH GNP

