
CS302 - Problem Set 0

1. Prove that the algorithm is correct.

Solution Let P (n) be the predicate that RecMultiplication correctly multiplies
two n-digit numbers, for n ≥ 1. We prove correctness by strong induction on n.

For the base case, if n = 1, the algorithm triggers the base case and returns a ∗ b,
so P (n) is true.

Now for the inductive step. For strong induction, we assume that P (k) is true for
all k such that n > k ≥ 1. Using this assumption, we will prove P (n) is true. Since
n > 1, the recursive case of the algorithm triggers. Note that each of the recursive calls
in line 14 involves a multiplication of two numbers with n − h digits (thanks to our
padding with zero steps), where h = bn/2c ≥ 1. Since n− h < n, we may assume the
algorithm returns the correct output on these inputs. That is, it returns the product
of the two inputs.

Therefore, the algorithm returns
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Thus, by strong induction, the algorithm is correct for all n ≥ 1.
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