Direct Proof

Use a direct proof to prove:
If $a \mid b$ and $b \mid c$, then $a \mid c$.
(recall: $x \mid y \equiv \exists w \in \mathbb{Z}: x w=y$)
If finish, please sit and work on proving:

- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$.
- If n even, then n^{2} is even.

Contrapositive

Use a contrapositive proof to show
If a^{2} is not divisible by 4 , then a is odd.
If finish, please sit and work on:

- Why is the above hard to prove directly?
- Prove: for every prime number p, either $p=2$ or p is odd

