s.Kimmec

Goals

- Use permutations + combinations to solve problems
- use $\pi,!, \Sigma,\{ \}^{k}$ notation appropriately

Quiz Topics \rightarrow most recent Pret (or 2$)$

Permutation Warmup
Q: There are 10 singles left in Cofforin and you and 2 friends want to pick 3 of them. How many ways could you choose rooms.
A) 30
B) 300
c) 720
D) 1000

Answer: using product rule $10.9 .8=720$

SKIMMED
List possibilities
Rom of
person Person Person
$(5,7,10) \lll<$ permutation of
$(2,3,7)\{1,2,3, \ldots, 10\}$
Def: A k-permutation of n elements is
An ordering of a set of k elements where those K are chosen from n elements
ex: (a, c) is a 2 -permutation of $\{a, b, c, d\}$.
$P: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}, \quad P(n, K)=\#$ of k-permutations of n clements

Solution to Plicker question on previous page:

$$
P(10,3)
$$

s.Kimmel

Q: Use product rule to find formula for $P(n, k)$.

A: $n \cdot(n-1)(n-2) \cdots(n-k+1)$

Notation: can write as $\prod_{i=n-k+1}^{n} i$

Product Symbol/Summation Symbol
Given an ordered list of elements $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$

$$
\begin{aligned}
& \prod_{i=j}^{k}=a_{j} \times a_{j+1} \times a_{j+2} \times \cdots \times a_{k} \\
& \sum_{i=j}^{k}=a_{j}+a_{j+1}+a_{j+2}+\cdots+a_{k}
\end{aligned}
$$

s.Kimmec

Notation

$$
n!=\prod_{i=1}^{n} i=1 \cdot 2 \cdot 3 \cdot 4 \cdots \cdot n
$$

Another way to write $P(n, k)$:

$$
10 \cdot 9 \cdot 8\left(\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}\right)=\frac{10!}{7!}
$$

so $\quad P(n, k)=\frac{n!}{(n-k)!}$
Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. Suppose you just want to pick 3 rooms now, and you'll figure out who will stay where later. How many ways could you pick 3 rooms?
A) 30
B) 120
c) 240
D) 360

SKIMMED
We know 720 ways if care about order.

$$
\begin{aligned}
& \begin{array}{l}
\text { If } \\
\text { Care about } \\
\text { order; tres }
\end{array}\left\{\begin{array}{l}
(2,3,5),(2,5,3),(3,2,5),(3,5,2) \\
\left(\begin{array}{l}
5,2,3),(5,3,2)
\end{array}\right.
\end{array}\right. \\
& \begin{array}{l}
\text { are all } \\
\text { different }
\end{array} \quad \rho \uparrow \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { pick } \frac{1}{\text { pick }} \text { pick }
\end{aligned}
$$

But if don't care about order, these are all the same. $\quad\{2,3,5\}$
\Rightarrow Over counting by a factor of 6 for each set!

$$
720 / 6=120
$$

SKIMMER
Function
$C(n, r)=\binom{n}{r}=" n$ choose r " is the number of
a sets of r elements chosen from a set of n elements.
order doesn't matter

Fact: $P(n, r)=\binom{n}{r} \cdot P(r, r)$ Why?

$$
\Rightarrow\binom{n}{r}=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!\left(\frac{r!}{1!}\right)}=\frac{n!}{(n-r)!\cdot r!}
$$

Using the product rule.
The number of ways we can order r things chosen from among n things is equal to the number of subsets of r things, times the ways we can order each subset.

$$
\binom{n}{r}=\frac{n!}{(n-r)!\cdot r!}
$$

