Deduction

André has a black suit and a tweed suit. He always wears his tweed suit OR he wears sandals. If he wears his tweed suit and purple shirt, he does not wear a bow tie. He never wears his tweed suit unless he also wears a purple shirt OR sandals. If he wears sandals, he also wears a purple shirt. Yesterday, André wore a bow tie. What else did he wear?

OR=logical or
Solve using truth table and reasoning
$W=$ Tweed suit S=Sandals
$\mathrm{P}=$ Purple Shirt
$B=$ Bowtie

Deduction

W=tweed suit
S=Sandals
$\mathrm{P}=$ Purple Shirt
$\mathrm{B}=$ Bowtie

$$
\begin{gathered}
W \vee S \\
(W \wedge P) \rightarrow \neg B \\
W \rightarrow(P \vee S) \\
S \rightarrow P \\
B
\end{gathered}
$$

Set-Builder Notation

- $\{-3,-2,-I, 0, I, 2,3\}$
- The set of numbers that are divisible by 7 or 3 .
- The set of odd integers
- The set of powers of two up to 100 .

Set-Builder Notation

- $\{-3,-2,-1,0,1,2,3\}$

$$
-\{x: x \in \mathbb{Z} \wedge|x| \leq 3\}
$$

- The set of numbers that are divisible by 7 or 3 .

$$
-\left\{x:\left(\frac{x}{7} \in \mathbb{Z}\right) \vee\left(\frac{x}{3} \in \mathbb{Z}\right)\right\}
$$

Set-Builder Notation

- The set of positive odd integers $-\{2 x+1: x \in \mathbb{N}\}$
- The set of powers of two up to 100 .
$-\left\{2^{x}:(x \in \mathbb{N}) \wedge\left(2^{x} \leq 100\right)\right\}$

