Funk (m)
Input : Integer m
Output: $3^{m}-2^{m}$
1 if $m \leq 1$ then
2 return m;
3 end
4 return $5 \times \operatorname{Funk}(m-1)-6 \times \operatorname{Funk}(m-2)$;
Prove Funk (n) outputs $3^{n}-2^{n}$ for all $n \geq$

- Base case(s):
- Let $k \geq \ldots$. Assume for strong induction that $P(j)$ is true for all j such that $\quad _\quad \leq \leq k$.

Draw this graph:

- $V=\{a, b, c, d, e\}$
- $E=\{\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{d, e\}, b, e\},\{c, e\}\}$

If

- $a=$ racoon
- $b=$ hawk
- $c=o w l$
- $d=$ squirrel
- $e=$ crow

What does the graph represent?

Graph Applications

- Brainstorm other natural questions we might want to ask about graphs, and give a real world example where that is a useful question.

