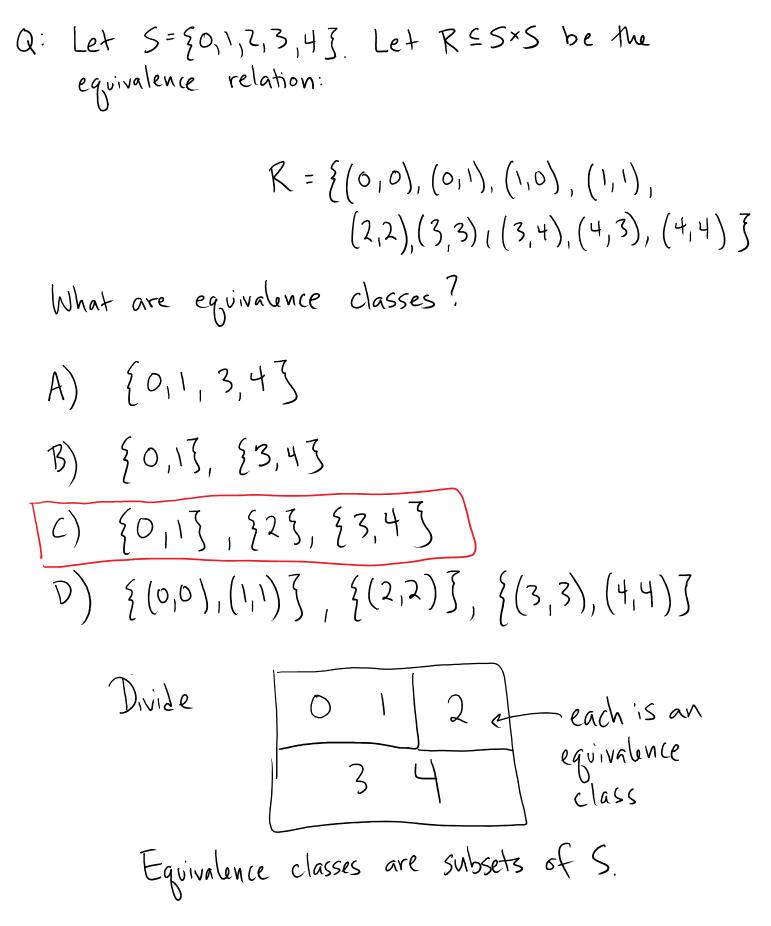
S.KIMMEL

Spring Symposium Bonus!

R is an
equivalence relation
$$\implies$$
 S can be divided
up into equivalence
classes according to
R.
 $(a,b) \in R \iff$ A and b are in
the same equivalence
class

Q: Let
$$S = \{0, 1, 2, 3, 4\}$$
. Let $R \leq S \times S$ be the equivalence relation:
 $R = \{(0, 0), (0, 1), (1, 0), (1, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$
What are equivalence classes?
A) $\{0, 1, 3, 4\}$
B) $\{0, 1\}, \{3, 4\}$
C) $\{0, 1\}, \{3, 4\}$
D) $\{(0, 0), (1, 1)\}, \{(2, 2)\}, \{(3, 3), (4, 4)\}$



S.KIMMEL

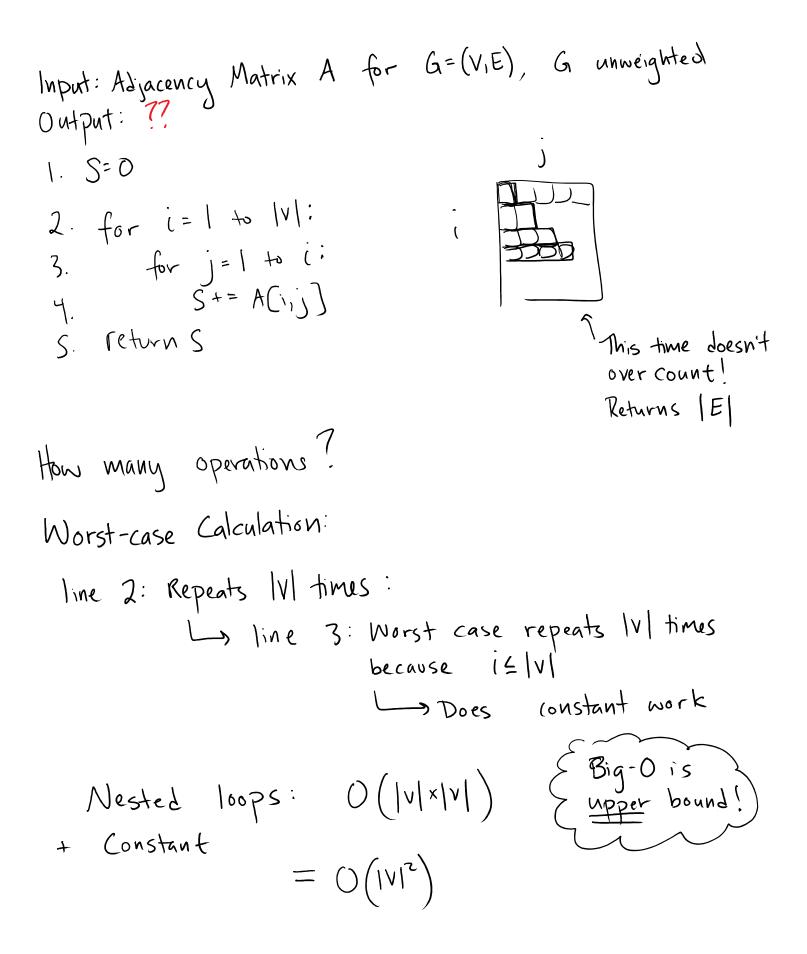
To prove R is equivalence relation:
3 mini proofs (usually 1 line each) or explanations
- Symmetric, Reflexive, Transitive
To prove R is not an equivalence relation
Show 1 property doesn't hold
Properties have form
$$\forall q \in S...$$

 \Rightarrow Need counter example to show not $\forall a \in S...$

Input: Adjacency Matrix A for
$$G=(V,E)$$
, G unweighted
Output: ??
1. $S=0$
2. for $i=1$ to $|V|$:
3. for $j=1$ to i ;
4. $S+=A(i,j)$
5. return S
This time doesn't over count!
Returns $|E|$
How many operations?
• Use Z for loops
• Use I for O(1) operations
typerations= $1 + \sum_{i=1}^{|V|} (Work done inside it loop iteration)$
 $\lim_{i=1}^{|V|} \lim_{j=1}^{|V|} (Vork done inside it loop iteration)$
 $\lim_{i=1}^{|V|} \lim_{j=1}^{|V|} \lim_{j=1}^{|V|}$

Evaluate from the inside out:
operations =
$$1 + \sum_{\substack{i=1 \ i=1}}^{|v|} \left(\sum_{\substack{j=1 \ j=1}}^{i} 1\right)$$

= $1 + \sum_{\substack{i=1 \ i=1}}^{|v|} i$
= $1 + \left(1 + 2 + 3 + \dots + |v|\right)$
= $1 + (|v|+1) \frac{|v|}{2}$
You proved when we did induction,
= $O(|v|^2)$
"Arithmetic Series"



Relations and Summation Page 7