Goals

- Prove (not) equivalence relation
- Identify equivalence classes
- Analyze runtime of FOR-loops

Reflections

- This pet is challenging
- identify proof strategy
* If stuck, try different approach
* Will develop intuition with practice
- combining functions/counting/graphs
* Make sure basics are solid

Equivalence Relations
Why do we care? They allow us to define equivalence classes.
equivalence relation on S (i.e. $R \subseteq S \times S$)

$$
(a, b) \in R
$$

S can be divided up into equivalence classes according to R.
a and b are in the same equivalence class

SKIMMED
Q : Let $S=\{0,1,2,3,4\}$. Let $R \leq 5 \times S$ be the equivalence relation:

$$
\begin{aligned}
R=\{ & (0,0),(0,1),(1,0),(1,1), \\
& (2,2),(3,3),(3,4),(4,3),(4,4)\}
\end{aligned}
$$

What are equivalence classes?
A) $\{0,1,3,4\}$
B) $\{0,1\},\{3,4\}$
c) $\{0,1\},\{2\},\{3,4\}$
D) $\{(0,0),(1,1)\},\{(2,2)\},\{(3,3),(4,4)\}$
Q : Let $S=\{0,1,2,3,4\}$. Let $R \leq 5 \times S$ be the equivalence relation:

$$
\begin{aligned}
R=\{ & (0,0),(0,1),(1,0),(1,1), \\
& (2,2),(3,3),(3,4),(4,3),(4,4)\}
\end{aligned}
$$

What are equivalence classes?
A) $\{0,1,3,4\}$
B) $\{0,1\},\{3,4\}$
c) $\{0,1\},\{2\},\{3,4\}$
D) $\{(0,0),(1,1)\},\{(2,2)\},\{(3,3),(4,4)\}$

Divide

| 0 | 1 | 2 |
| :--- | :--- | :--- | | each is an |
| :--- |
| 3 | 4

Equivalence classes are subsets of S.

SKIMMER
To prove R is equivalence relation:

- 3 mini proofs (usually 1 line each) or explanations
- Symmetric, Reflexive, Transitive

To prove R is not an equivalence relation

- Show 1 property doesn't hold
- Properties have form $\forall a \in S$...
\Rightarrow Need counterexample to show not $\forall a \in S$...

Input: Adjacency Matrix A for $G=(V, E), G$ unweighted Output: ??

1. $S=0$
2. for $i=1$ to $|v|$:
3. for $j=1$ to i :
4. $\quad S+=A[i, j]$
S. return S

This time doesn't over count!
Returns $|E|$
How many operations?

- Use \sum for loops
- Use 1 for O(1) operations
\# $\#$ operations $=\frac{1}{\uparrow}+\sum_{i=1}^{|v|}$ [work done inside it loop iteration] line 1\&5 line 2

$$
=1+\sum_{i=1}^{|v|}\left[\sum_{\substack{i=1}}^{\substack{i n e \\ \text { line } 4}}\right.
$$

Write your expression from outer loops to inner loop
s.Kimmec

Evaluate from the inside out:

$$
\begin{aligned}
& \text { \# operations }=1+\sum_{i=1}^{|v|}\left[\sum_{j=1}^{i} 1\right] \\
&=1+\sum_{i=1}^{|v|} i \\
&=1+[1+2+3+\cdots+|v|] \\
&=1+(|v|+1) \frac{|v|}{2} \quad \text { You proved when, we } \\
& \text { did induction. } \\
&=O\left(|v|^{2}\right) \quad \text { "Arithmetic Series" }
\end{aligned}
$$

"Detailed Calculation"

Input: Adjacency Matrix A for $G=(V, E), G$ unweighted Output: ??

1. $S=0$
2. for $i=1$ to $|v|$:
3. for $j=1$ to i :
4. $\quad S+=A[i, j]$
S. return S

This time doesn't over count!
Returns $|E|$
How many operations?
Worst-case Calculation:
line 2: Repeats $|V|$ times:
\longrightarrow line 3 : Worst case repeats $|v|$ times because $i \leqslant|v|$
\longrightarrow Does constant work

Nested loops: $O(|v| \times|v|)$
Big-O is upper bound!

+ Constant

$$
=O\left(|V|^{2}\right)
$$

