S.KIMMEL

Glodis
· Describe the connection between counting and probability
· Describe sample space, events, probability of an event
· Determine the probability of events.
MilterM
· Everything except probability (up to PS 8)
· Bost to cannos Discussion tonight to influence Wed. review
· Same system as first midterm
Q: If 8 people from a basketball team show up to
a game, how many ways are there to form a
S person team?
A) 40 B) 5 C C) 6 O D) 112
Q:
How many DNA strings of length S, i.e. strings
in
$$EC,T, G, A3^{S}$$
 have exactly 3 C's, and no other
repeated letters?

$$\frac{8!}{5!3!} = \frac{8.7.6}{3.2.1} - 8.7 = 56$$

Task 1 and Task 2 = 60
Choose where to put C's:

$$\binom{5}{2} = \frac{5!}{2!3!} = \frac{5\cdot4}{2!} = 10$$

Choose 2 out
 $\binom{5}{2} = \frac{5!}{2!3!} = \frac{5\cdot4}{2!} = 10$
Choose 2 out
 $\binom{5}{2} = \frac{5!}{2!3!} = \frac{5\cdot4}{2!} = 10$
The have C's and Task 2 = 6
Choose 2 of choose 2 of remaining 3
 $P(3, 2) = \frac{3!}{1!} = 6$

Probability
Robability is all about counting
ex: What is the probability that the outcome of a di
roll is at least 5?
1. Count all outcomes

$$\left| \{21,2,3,4,5,6,7\} \right| = 6$$

2. Count outcomes where rolled value is ≥ 5
 $\left| \{5,6,7\} \right| = 2$
3. Take ratio:
 $\frac{2}{6} = \frac{1}{3}$

Terminology
• Sample space: set of all possible outcomes
• Event: subset of sample space.
def: If all elements in sample space S are
equally likely, the probability of an event E is

$$P_r(E) = \frac{|E|}{|s|}$$

Note: Probability that an event E does NOT happen

$$I - p(E)$$

Sometimes easier to calculate the probability of an event
not happening, and use this rule to find the probability of
an event happening.

or Product rule:
$$\begin{pmatrix} 4\\ 3 \end{pmatrix} \cdot 9 = 36$$

0. What is the probability that you
$$\underline{DoN'T}$$
 win lottery?
(Don't get 3 or 4 digits the same)
A) 0.99(2 B) 6.9963 C) 0.9964 D) 0.9965
 \widehat{T}
Sum $\left(\frac{36}{1}$ ways to match $3^{\pm}s$
 $\frac{1}{37}$ ways to match $4^{\pm}s$
 $Pr(Not win) = 1 - \frac{37}{10,000} = 0.9963$

· .