CS200 - Problem Set 2

Please read the sections of the syllabus on problem sets and honor code before starting this homework.

1. Inductive Proofs

(a) [11 points] Prove using induction that for $n \geq 0,7^{n}-2^{n}$ is divisible by 5. (An integer m is divisible by an integer r if $m=r \cdot g$, where g is some other integer.)
(b) [11 points] Prove using induction that $2^{n}>n^{2}$ whenever n is an integer, and $n \geq 5$.
(c) [11 points] Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$ for any integer n such that $n \geq 1$.
(d) [11 points] Finish the following proof that Algorithm 1 correctly multiplies an integer $n \geq 0$ and an integer b.

Algorithm 1: $\operatorname{Mult}(n, b)$

Input : Non-negative integer n, and integer b
Output: $n \times b$
/* Base Case
if $n==0$ then return 0 ;
else
// Recursive step
return $b+\operatorname{Mult}(n-1, b)$;
end
Proof: Let $P(n)$ be the predicate: $\operatorname{Mult}(\mathrm{n}, \mathrm{b})$ correctly outputs the product of n and b. We will prove using induction that $P(n)$ is true for all $n \geq 0$.

For the base case, let $n=0$. In this case, we see the If statement is true at line 1 , and so the algorithm returns 0 . This is precisely what we want, since $0 \times b=0$ for any integer b, so the algorithm is correct and $P(0)$ is true.

For the inductive step...
2. [3 points each] For each of the following sentences, decide whether it is a statement, predicate, or neither, and explain why
(a) Call me Ishmael.
(b) The world is supported on the back of a giant tortoise.
(c) x is a multiple of 7 .
(d) The next sentence is true.
(e) The preceding sentence is false.
(f) The set \mathbb{Z} contains an infinite number of elements.

3. [3 points each]

There are many ways to represent the logical implication $(P \rightarrow Q)$ in English. To make proofs more interesting to read, we often take advantage of these different ways of phrasing the same underlying mathematical statement. In the following, I will ask you to rewrite sentences in the form $p \rightarrow q$. For example, "I get a brain freeze if I eat ice cream" should be rewritten "I eat ice cream \rightarrow I get a brain freeze." Normally there are two clear possibilities: $p \rightarrow q$ or $q \rightarrow p$ and only one of them makes sense. If you are having trouble, check out p. 43 of Book of Proof, or problem 5 in Chapter 0 of DMOI (which has solutions).
(a) I open my umbrella whenever it rains.
(b) I miss class only if I am unwell.
(c) You can't invent unless you are curious and knowledgeable.
4. [6 points] Prove using a truth table that $((A \vee B) \wedge(A \rightarrow C) \wedge(B \rightarrow C)) \rightarrow C$ is true. (Note $P \wedge Q \wedge R$ is only true when all of the predicates are true, and is false otherwise.) This statement is also known as "proof by cases." Please explain why. (Hint: the two cases are related A and B, and we want to say something about C.)
5. How long did you spend on this homework?

