CS200 - Problem Set 12

1. Consider rolling 5 dice. Let $X_{i, j}$ be an indicator random variable that takes value 1 if the i th di has outcome j (and takes value 0 otherwise).
(a) [$\mathbf{3}$ points] What is the sample space? What is its size?
(b) [$\mathbf{3}$ points] Let X be the random variable that is the sum of all of the values shown on the dice. If the outcome of the rolls is $s=(4,2,4,5,1)$, what is $X(s)$? What is $X_{3,4}(s)$? What is $X_{4,3}(s)$?
(c) [$\mathbf{3}$ points] Write X in terms of a weighted sum of the variables $X_{i, j}$.
(d) $[3$ points $]$ What is $\mathbb{E}\left[X_{i, j}\right]$?
(e) [$\mathbf{3}$ points] Use linearity of expectation to determine the average value of the sum of all values shown on the dice.
2. Suppose a group of n people each order a different flavor of ice cream at an ice cream shop. Suppose the server didn't keep track of who ordered which flavor, and just handed the ice cream out randomly.
(a) 3 points Let X a random variable that is the number of people who got handed the correct flavor. Let X_{i} be the indicator random variable that takes value 1 if person i gets the correct flavor (and 0 otherwise.) Write X in terms of a sum of the X_{i}.
(b) 6 points Use linearity of expectation to determine the average number of people who get the correct flavor.
3. [6 points] Let $A=\mathbb{N}$, and $B=\{1,2\} \times \mathbb{N}$. Show $|A|=|B|$.
4. [11 points] Let S be the the set of functions from \mathbb{N} to $\{0,1\}$. Prove S is uncountably infinite.
5. How long did you spend on this homework?
