
CS200 - Problem Set 9
Due: Monday, April 30 to Canvas

1. Graph Search. In this problem we will use the graph described by the following adjacency
list:

A :

vertex adjacency list

s u, y
u v, z, s
y s, z
v w, a, u
z w, u, y
a v, t
w v, t, z
t a, w

We will also use the algorithm DepthFirstSearch, which is a version of the Graph Search
algorithm we saw in class. It’s pseudocode is:

Algorithm 1: DepthFirstSearch(A,X, s, f)
Input : Adjacency list A for a graph G = (V,E), an array X

of length |V | such that X[v] = 1 if v has been
explored and 0 otherwise, a starting vertex s, a goal
vertex f

Output: String “f found!” or “f not found” depending on
whether f can be found from s.

1 if s == f then
2 Return “f found!”;
3 else
4 X[s] = 1;
5 d = A[s].length;
6 for k = 1 to d do
7 if X[A[s, k]] == 0 then
8 DepthFirstSearch(A,X,A[s, k], f);
9 end

10 end

11 end
12 Return “f not found”

(a) [6 points] Please draw the graph the adjacency list corresponds to.

(b) [6 points] Suppose you start at s, and want to find t. In what order are vertices explored
if you use DepthFirstSearch(A,X, s, t)? (Where X is initially set to all zeros)

(c) [6 points] Suppose you start at s, and want to find y. In what order are vertices explored
if you use DepthFirstSearch(A,X, s, y)? (Where X is initially set to all zeros)?
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(d) [6 points] In our generic Graph Search algorithm, we did not specify how to choose the
next explored edge, in the case that there were multiple edges we could explore. How
does DepthFirstSearch choose which edge to explore next?

2. (a) [11 points] Prove that for all n ∈ Z and n ≥ 0, and any r ∈ R such that r 6= 1

n∑
i=0

ri =
rn+1 − 1

r − 1
. (1)

(b) [2 points] What does the sum evaluate to when r = 1?

3. (a) Let T (n) be the number of bit strings of length n that have two consecutive zeros. (A
bit string of length n is an element of {0, 1}n.) Consider a recurrence relation for T (n).

i. [3 points] What is the base case(s) for the recurrence relation?

ii. [6 points] What are the recursive conditions for the recurrence relation?

iii. [6 points] Use the recurrence relation to calculate T (5).

(b) Consider the following variant to the Tower of Hanoi. We start with all disks on peg 1
and want to move them to peg 3, but we cannot move a disk directly between peg 1 and
peg 3. Instead, we can only move disks from peg 1 to peg 2, or from peg 2 to peg 3.
So in the case of n = 1 disk, we have to first move the disk from 1 to 2, and then from
2 to 3. Let T (n) be the number of moves required to shift a stack of n disks from peg
1 to peg 3, if as usual, we can not put a larger disk on top of a smaller disk. Consider
creating a recurrence relation for T (n).

i. [3 points] What are the initial conditions for the recurrence relation?

ii. [6 points] What are the recursive conditions for the recurrence relation? (Explain)

iii. [6 points] Use the iterative method to solve for T (n) and give a big-O bound on
T (n).

[11 points] Prove Algorithm 2 correctly outputs a list of the prime factors of an integer.
The prime factors of n are a list of primes whose product is n. For example for input 60, the
algorithm outputs: “2,2,3,5”, since 2, 3, 5 are all prime, and 2× 2× 3× 5 = 60. Hint: while
proving the inductive step, you should have two cases for the if/else statement.
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Algorithm 2: Factor(n)
Input : An integer n such that n ≥ 2
Output: String of the prime factors of n
/* Recursive Step */

1 d = 2;
2 while n%d 6= 0 do
3 d+ = 1;
4 end
5 if d == n then
6 return “n”;
7 else
8 return Factor(d)+Factor(n/d). // "+" concatenates

strings

9 end

4. Suppose all possible directed graphs (with no self-loops) on the set of vertices {1, 2, 3, 4, 5, 6}
are equally likely. What is the probability that you get a graph that is bipartite between the
sets {1, 2, 3} and {4, 5, 6}? (Hint: think about breaking the problem up into choosing what
to put between each pair of vertices, and think about how many choices you have for each
pair.)
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