SKIMMER
GROUPS
CS200A:

| Cheko |
| :--- | :--- | :--- | :--- |
| Vagi |
| Kaylee |\quad| Lois |
| :--- |
| Culton |
| Lucas |\quad| Samantha |
| :--- |
| Leily |
| Danny |\quad| Diego |
| :--- |
| Dubner |
| Quintan |

$C 5200 B$

Sophie	Diana	Gray	Alexander
Matthew D	Hannah	Myles	Stephan
Caroline	Mathew H	Angad	Sammy
Griffin	Maxwell	Jacob	Arielle
Christian N	Sophie	Christian W	Alexandra
Henry	Rachel	Aska	Madeleine

Learning Goals

- Describe Inductive Proofs at a high level
- Describe inductive proof structure
- Find errors in inductive proofs

Announcement

- Taken lots of math? Come see me.

Sample Syllabus Quiz Question:
Q: Which of the following problem set parts are graded for correctness?
A. Rough Draft.
B. Main PSt Submission
C. Self Grade
D. None of them

Learning Goals

- Describe Inductive Proofs at a high level
- Describe inductive proof structure
- Find errors in inductive proofs Announcement
- Taken lots of math? Come see me.
- Prequiz due Today, Rough Draft Sat Sample Syllabus Quiz Question:
Q: Which of the following problem set parts are graded for correctness?
A. Rough Draft.
B. Main PSt Submission
C. Self Grade
D. None of them All graded on effort, although you will get the most out of self-grade if you try for accuracy.
Syllabus Discussion (at end)
- Problem Set: Rough Draft, PSET, self-Grade, Reflection $\begin{gathered}\text { opt } \\ \text { opt }\end{gathered}$

Demonstrate you have thought a
little about PSET

SKIMMED
Induction
Recursive algorithm correctness
\longleftrightarrow Proof by induction

Example
Suppose you have unlimited 5^{k} stamps and 8^{k} stamps. What postage values can you create?

What about

$$
18^{4} \sqrt{ }
$$

What about 284? Yes!

$$
\text { F同 } 1 / 518
$$

What about 85,694 4 ? ???

SKIMMER

Induction: use old solution to get new solution

Q

Suppose

Induction: use old solution to get new solution

Q

A:

Consequence: If can create n^{\star} with at least 3
[5] or at least 3 , can create $n+1 \&$

SKIMMER
$28^{4}=4 \cdot 5+1 \cdot \underbrace{1} \quad Q$ If $85,693^{4}=$
$2 a^{x}=1 \cdot \sqrt{9}+3 \cdot 8$
$30^{k}=6$ 月
$31^{k}=3 \overrightarrow{5}+2 \cdot 8$

$$
5,761 / 5]+7111 \cdot \sqrt{8}
$$

then can create

$$
85,694 \& \text { as }
$$

A) $5759 / 7114$
B) $5764 / 7108$
c) $5766 / 7108$
D) $5758 / 7113$

SKIMMED

$$
\begin{array}{lll}
\left.28^{k}=4 \cdot\right]^{5}+1 \cdot 8 & \text { Q: If } 85,693^{k}= \\
2 a^{k}=1 \cdot \sqrt{6}+3 \cdot \sqrt{8} & 5,7611^{5}+7111 \cdot[8
\end{array}
$$

$$
30^{k}=6 \text { B }
$$

then can create

$$
31^{k}=3 \beta+2 \cdot 8
$$

$$
\begin{gathered}
85,694 \& \text { as } \\
5758+\sqrt{5}+\sqrt{6}
\end{gathered}
$$

Answer:
A) $5759 / 7114$
B) $5764 / 7108$
C) $5766 / 7108$
D) $5758 / 7113$
find first solution, \& the rest fall into place

* Any postage 228^{8} is possible

Start at $28^{8} \rightarrow 29^{8} \rightarrow 30^{8} \cdots 85,693^{4} \cdots$

SKIMMER
Principle of Induction: solution to smaller problem provides solution to larger
problem

Stamps - need to have solution to n to get to $n+1$
Once you get $28^{\frac{8}{*}}$ solution, were good -always at least 35^{4} or 8 \& Inductive Metaphor

Ladder H_{s}
92. Show how to move from each rung to next Shows you can get to all rungs!. (Above $1^{\text {st }}$ rung)

Formal Inductive Pro of
Proofs have a unique style/language

- Essay vs. Texting vs News article vs lab notebook

Different writing styles
This class \rightarrow proof language.
Induction proof has a recipe, so easier style than other proofs.
s.Kimmec

Inductive proof recipe:

$$
\left(\operatorname{set}-u_{p}\right)
$$

Let $P(n)$ be the predicate $\frac{n^{4} \text { of postage can be formed }}{\text { from } 5^{4} \text { and } 8^{4} \text { stamps }}$
We will prove, using induction on n, that $P(n)$ is true for all $n \geq 28$.
(Base Case)
Base case: $P(28)$ is true because \qquad
(Inductive Step) bast lase *
Inductive case: Let $k \geq 28$. Assume, for induction, that $P(k)$ is true.
That means \qquad
So \qquad
Then \qquad
Plugging in \qquad $\}$ go $P(k+1)$ ward

Thus $P\left(k_{+1}\right)$ is true
(Conclusion)
Therefore, by induction, $P(n)$ is true for all $n \geq$

Q: Put the following sentences in the correct order, and identify and correct any errors.

Then there exists an integer b such that $7^{k}-1=6 b$.

Because b is an integer, $7 b+1$ is an integer, so $P(k+$ $1)$ is true.

Inductive Step: Let $k \geq 1$ and assume that $P(k)$ is true.
Let $P(n)$ be the predicate $7^{n}-1$ is a multiple of 6 for all $n \geq 0$.

Base Case: $P(1)$ is true because $7^{1}-1=6$, which is a multiple of 6 since $6 \times 1=6$.

We will prove using induction that $P(n)$ is true.
Therefore, by induction on $n, P(n)$ is true for all $n \geq 0$.
Multiplying both sides by 7 , we get $7^{k+1}-1=$ $6(7 b+1)$.

$\underline{\text { Proof that } 7^{n}-1 \text { is a multiple of } 6 \text { for all } n \geq 0 \text {, with errors corrected: }}$

We will prove $P(n)$ is
Let $P(n)$ be the predicate $7^{n}-1$ is a multiple of 6, for all $n \geq 0$. true for all $n \geq 0$.
Why?
P is a function that takes in a number and outputs a sentence
" $P(n) \Rightarrow{ }^{\prime \prime} 7^{n}-1$ is a multiple of 6 for all $n \geq 0$."
$P(2) \Rightarrow 7^{2}-1$ is a multiple of $6 \underbrace{\text { for all } 2 \geq 0}_{\begin{array}{c}\text { doesn't make } \\ \text { sense }\end{array}}$

We will prove using induction that $P(n)$ is true.

$$
P(0) \quad 7^{0}-1=0
$$

Base Case: $P(1)$ is true because $7^{1}-1-6$, which is a multiple of 6 since $6 \times$ $1=6 . \quad 6 \times 0=0$ 。
$k \geq 0$
Inductive Step: Let $k \geq 1$ and assume that $P(k)$ is true.
Then there exists an integer b such that $7^{k}-1=6 b$. and adding 6 to both sides
Multiplying both sides by 7 , we get $7^{k+1}-1=6(7 b+1)$.

Because b is an integer, $7 b+1$ is an integer, so $P(k+1)$ is true.

Therefore, by induction on $n, P(n)$ is true for all $n \geq 0$.

