GROUPS CS200A:

Cheko	Loic	Samantha	Diego
Yaqi	Culton	Leily	Dubner
Kaylee	Lucas	Denny	Quinlan
Sam C Danielle Hirona	Agastya Sophia Lily	Alexander Benjamin Samuel L	Halcyon Sam K L. Kelly

C5200B

Sophie	Diana	Gray	Alexander
Matthew D	Hannah	Myles	Stephan
Caroline	Matthew H	Angad	Sammy
Griffin	Maxwell	Jacob	Arielle
Christian N	Sophie	Christian W	Alexandra
Henry	Rachel	Aska	Madeleine

Learning Goals

- · Describe Inductive Proofs at a high level
- · Describe inductive proof structure
- · Find errors in inductive proofs

Announcement

· Taken lots of math? Come see me.

Sample Syllabus Quiz Question:

- Q: Which of the following problem set parts are graded for correctness?
 - A. Rough Draft.
 - B. Main PSet Submission
 - c. Self Grade
 - D. None of them

Learning Goals

- · Describe Inductive Proofs at a high level
- · Describe inductive proof structure
- · Find errors in inductive proofs

Announcement

- · Taken lots of math? Come see me.
- · Prequiz due Today, Rough Draft Sat

Sample Syllabus Quiz Question:

- Q: Which of the following problem set parts are graded for correctness?
 - A. Rough Draft.
 - B. Main PSet Submission
 - C. Self Grade
 - D. None of them # All graded on effort, although you will get the most out of self-grade if you try for accuracy.

Syllabus Discussion (at end)

• Problem Set: Rough Draft, PSET, Self-Grade, Reflection

Demonstrate you have thought a little about PSET SKIMMEL

Induction

Recursive algorithm Proof by induction

Example

What about

Suppose you have unlimited 5th stamps and 8th stamps. What postage values can you create?

What about 2847. Yes.

15/5/15/18

What about 85,694 £? "!!

Induction: use old solution to get new solution

Suppose
$$N^{k} = \sqrt{5550} + \sqrt{5000} = \sqrt{3}$$

remove $\sqrt{500} = 15^{\frac{1}{4}}$
 $\sqrt{500} = 15^{\frac{1}{4}}$
 $\sqrt{500} = 15^{\frac{1}{4}}$

Suppose $\sqrt{500} = \sqrt{5000} = \sqrt{5000}$
 $\sqrt{500} = \sqrt{500}$
 $\sqrt{500} = \sqrt{500}$
 $\sqrt{500} = \sqrt{500}$
 $\sqrt{5$

Induction: use old solution to get new solution

SKIMMEL

$$28^{4} = 4 \boxed{5} + 1 \boxed{8}$$

$$26^{4} = 1 \boxed{5} + 3 \boxed{8}$$

$$30^{4} = 6 \boxed{5}$$

$$31^{4} = 3 \boxed{5} + 2 \boxed{8}$$

A)
$$5759/7114$$

B) $5764/7108$
c) $5766/7108$
D) $5758/7113$

$$\frac{1}{\sqrt{5}} + \frac{\sqrt{9}}{\sqrt{9}}$$

S.KIMMEL

$$28^{4} = 4.5 + 1.8$$

$$26^{4} = 1.5 + 3.8$$

$$30^{4} = 6.5$$

$$31^{4} = 3.5 + 2.8$$

$$\vdots$$

Answer:

5766 TS + 7108 PS A) 5759/7114

B) 5764/7108

Any postage = 28 is possible

Start at 284 -> 294 -> 304 85,6934

\mathcal{C}	Ki	MMEL	
\rightarrow		1 11 16	_

Principle of Induction: solution to smaller problem provides solution to larger problem

Inductive Metaphor

1/52. Show how to move from each rung to next

Le 1. Show how to get on first rung (1st solution)

Shows you can get to all rungs! (Above 1st rung)

Formal Inductive Proof

Proofs have a unique style/language
- Essay vs. Texting us News article us lab notebook

Different writing styles

This class -> proof language.

Induction proof has a recipe, so easier style than other proofs.

S.KIMMEL
Inductive proof recipe:
Mouchive proof recipe: Set-UP) Sentence with a sentence with a variable in it
Let P(n) be the predicate Nt of postage can be formed from 54 and 84 stamps
We will prove, using induction on n , that $P(n)$ is true to
all $N \ge 28$.
Base Case
Base case: P(28) is true because
(Inductive Step) base case #
Inductive case: Let $k \ge 28$. Assume, for
induction, that P(K) is true.
That means P(K) Then P(K)
5 6
Then Plugging in P(K+1) Don't Bock Ward
Plugging in P(K+1)
Mus P(K+1) is true
(Conclusion)
Therefore, by induction, P(n) is true for all n =

Q: Put the following sentences in the correct order, and identify and correct any errors.

Then there exists an integer b such that $7^k - 1 = 6b$.

Because b is an integer, 7b + 1 is an integer, so P(k + 1) is true.

Inductive Step: Let $k \ge 1$ and assume that P(k) is true.

Let P(n) be the predicate $7^n - 1$ is a multiple of 6 for all $n \ge 0$.

Base Case: P(1) is true because $7^1 - 1 = 6$, which is a multiple of 6 since $6 \times 1 = 6$.

We will prove using induction that P(n) is true.

Therefore, by induction on n, P(n) is true for all $n \ge 0$.

Multiplying both sides by 7, we get $7^{k+1} - 1 = 6(7b + 1)$.

<u>Proof that $7^n - 1$ is a multiple of 6 for all $n \ge 0$, with errors corrected:</u>

We will prove P(n) is Let P(n) be the predicate 7^n-1 is a multiple of 6. for all $n \ge 0$. The for all $n \ge 0$.

Why!

P is a function that takes in a number and outputs a sentence

P(n) * "7"-1 is a multiple of 6 for all n 20."

P(2) * 72-1 is a multiple of 6 for all 220

doesn't make sense

We will prove using induction that P(n) is true.

 $7^{\circ}-1=0$ Base Case: P(1) is true because $7^{1}-1=6$, which is a multiple of 6 since $6\times 1=6$. $6\times 0=0$.

K20

Inductive Step: Let $k \ge 1$ and assume that P(k) is true.

Then there exists an integer b such that $7^k - 1 = 6b$.

and adding 6 to both sides

Multiplying both sides by 7, we get $7^{k+1} - 1 = 6(7b + 1)$.

Because b is an integer, 7b + 1 is an integer, so P(k + 1) is true.

Therefore, by induction on n, P(n) is true for all $n \ge 0$.