SKIMMER
Goals

- Describe a relation
- Describe relationship between equivalence classes and relations.
- Prove whether a relation is an equivalence relation

Equivalence Classes
Can be useful to divide elements of a set into subsets, and think of all elements in a subset as equivalent.

Example: Set of All Algorithms

Example: \mathbb{Z}

SKIMMER
We call these subsets equivalence classes.
How to define mathematically? Use Relations.
def: Let A be a set. Then a relation R on A is $R \subseteq A \times A$
 regular parentuses means order matters

Q: Which of the following relations on \mathbb{Z} has $(1,-1)$ as an element?
A) $\left\{(a, b): a^{2}=b\right\} \leftarrow$ contains $(-1,1)$
B) $\left\{(a, b): a=b^{2}\right\} \leftarrow 1=(-1)^{2}$
c) $\{(a, b): a b=1\}$
D) None of above

Equivalence Relation:
def: $R \subseteq A \times A, R$ reflexive, symmetric, transitive

$$
\forall a \in A,(a, a) \in \mathbb{R}
$$

$$
\begin{aligned}
& \forall a, b \in A,(a, b) \in R \rightarrow(b, a) \in R \\
& \forall a, b, c \in A,((a, b) \wedge(b, c)) \rightarrow(a, c)
\end{aligned}
$$

Equivalence Relations \rightarrow Equivalence Classes:

$$
(a, b) \in R \text { means } \begin{aligned}
& a \underset{\uparrow}{\equiv} b \text { means } \\
& \text { is equivalent to }
\end{aligned} \begin{aligned}
& a, b \text { in } \\
& \text { same } \\
& \text { equivalence } \\
& \text { class }
\end{aligned}
$$

SKIMMER
Q: What is an equivalence class for the equivalence relation

$$
L=\{(a, b): \text { length }(a)=\text { length }(b)\} \leq S \times S
$$

set of all bit strings
A) $(00,11)$
B) $\{(0,0),(0,1),(1,0),(1,1)\}$
C C $\{00,01,10,11\}$
D) It's not an equivalence relation, so cart get equivalence classes

Equivalence classes are sets of bitstrings with the same length

SKIMMER
A) Equivalence Relation
B) Not reflexive
c) Not symmetric
D) Not transitive
1.

$$
R=\{(a, b) \in \mathbb{R} \times \mathbb{R}: a-b \in \mathbb{Z}\}
$$

A) Equivalence Relation

- Reflexive: Let $a \in \mathbb{R}$. Then $a-a=0$, and $0 \in \mathbb{Z}$, so $(a, a) \in \mathbb{R}$.
- Symmetric: Let $a, b \in \mathbb{R}$. Assume $(a, b) \in \mathbb{R}$. Then $a-b \in \mathbb{Z}$, so $b-a \in \mathbb{Z}$, so $(b, a) \in R$.
-Transitive: Let $a, b, c \in \mathbb{R}$. Assume $(a, b),(b, c) \in R$. Then $\exists x, y \in \mathbb{Z}: a-b=x \wedge b-c=y$. Thus $a-c=x+y$
which is an integer so which is an integer, so $(a, c) \in R$
\Rightarrow Equivalence Classes: sets of numbers that have the same fractional part

$$
\text { ex: }\{\ldots,-1.9,-.9,0.1,1.1,2.1, \ldots\}
$$

