- Describe a relation Describe relationship between equivalence classes and relations.
- · Prove whether a relation is an equivalence relation

We call these subsets equivalence classes.
How to define mathematically? Use Relations.
def: Let A be a set. Then a relation R
on
$$A$$
 is $R \subseteq A \times A$
(meR) \rightarrow (meAxA) (a,b): a,b \in A
(meR) \rightarrow (meAxA) (a,b): a,b \in A
(meR) \rightarrow (meAxA) (a,b): a,b \in A
Regular parentless
means order matters
Q: Which of the following relations on Z has (1,-1) as
an element?
A) $\{(a,b): a^2=b$ $= b^2$ $= contains$ (-1,1)
B) $\{(a,b): a^2=b$ $= b^2$ $= (-1)^2$
Order matters
C) $\{(a,b): ab = 1$
D) None of above

•

Equivalence Relation:

$$\frac{d4}{d4}: R \leq A \times A, R \quad reflexive, symmetric, transitive
\forall a \in A, (a, a) \in R \quad \forall a, b \in A, (a, b) \in R \rightarrow (b, a) \in R \\
\forall a, b, c \in A, ((a, b) \land (b, c)) \rightarrow (a, c) \\
\forall a, b, c \in A, ((a, b) \land (b, c)) \rightarrow (a, c) \\
\hline
Equivalence Relations \rightarrow Equivalence Classes:
$$\frac{(a, b) \in R}{(a, b) \in R} \quad means \quad \begin{bmatrix} a, b & in \\ 1 & is equivalent + b \end{bmatrix} \quad \begin{bmatrix} a, b & in \\ same \\ equivalence \\ Class \end{bmatrix}$$$$

、

SKIMMEL

1

•