$-R(n,m) \equiv$ every natural number less than m divides n

 $-T(n,m) \equiv$ there is a natural number less than m that divides n

$$-W(n,m) \equiv n$$
 and m are not siblings

$-K \equiv$ every parent has at least two children

- Rewrite $\neg(\exists x: P(x))$ using \forall , rewrite $\neg(\forall x, P(x))$ using \exists

 $(m|n \equiv m \text{ divides } n) (M(x, y) \equiv x \text{ is } y$'s parent, S is set of all people)

 $-R(n,m) \equiv$ every natural number less than m divides n

• $\forall p \in \mathbb{N}, p < m \rightarrow p | n$

 $-T(n,m) \equiv$ there is a natural number less than m that divides n

• $\exists p \in \mathbb{N} : p < m \land p | n$

 $-W(n,m) \equiv n$ and m are not siblings

• $\neg(\exists p \in S: M(p, n) \land M(p, m))$

- $-K \equiv$ every parent has at least two children
 - $\forall x \in S, (\exists z \in S: M(x, z)) \rightarrow \exists w \in S: (w \neq z \land M(x, w))$
- Rewrite $\neg \exists x : P(x)$ using \forall , rewrite $\neg \forall x, P(x)$ using \exists

•
$$\forall x, \neg P(x)$$
. $\exists x: \neg P(x)$