$-R(n, m) \equiv$ every natural number less than m divides n
$-T(n, m) \equiv$ there is a natural number less than m that divides n
$-W(n, m) \equiv n$ and m are not siblings

- K 三every parent has at least two children
- Rewrite $\neg(\exists x: P(x))$ using \forall, rewrite $\neg(\forall x, P(x))$ using \exists
$(m \mid n \equiv m$ divides $n)(M(x, y) \equiv x$ is y 's parent, S is set of all people)
$-R(n, m) \equiv$ every natural number less than m divides n
- $\forall p \in \mathbb{N}, p<m \rightarrow p \mid n$
$-T(n, m) \equiv$ there is a natural number less than m that divides n
- $\exists p \in \mathbb{N}: p<m \wedge p \mid n$
$-W(n, m) \equiv n$ and m are not siblings
- $\neg(\exists p \in S: M(p, n) \wedge M(p, m))$
$-K \equiv$ every parent has at least two children
- $\forall x \in S,(\exists z \in S: M(x, z)) \rightarrow \exists w \in S:(w \neq z \wedge M(x, w))$
- Rewrite $\neg \exists x$: $P(x)$ using \forall, rewrite $\neg \forall x, P(x)$ using \exists
- $\forall x, \neg P(x)$. $\exists x: \neg P(x)$

