S.KIMMEL

Goals: - Implement Deduction Strategies

- Create sets using set builder notation

Deductions: Known true statements \rightarrow new true statements

$$
r Q
$$

If you graduate, you must pass of $=T$
swimming test.
You graduated $\sim P$
\therefore You passed a swim test.

If $P \rightarrow Q$ is true and
P is true, Q must be true

2 Strategies

1. Truth table. Cross out false rows, see what is left

2. Reason it out.

If P is true and $P \rightarrow Q$ is true then Q must be true because otherwise $T \rightarrow F=F$.
$Q:$
Andre has a black suit and a tweed suit. He always wears his tweed suit OR he wears sandals. If he wears his tweed suit and purple shirt, he does not wear a bow tie. He never wears his tweed suit unless he also wears a purple shirt OR sandals. If he wears sandals, he also wears a purple shirt. Yesterday, Andre wore a bow time. What else did he wear?
$O R=\operatorname{logical}$ or
$W=$ tweed Suit
$P=$ purple shirt
$S=$ sandals
B = bow tie
$W=$ tweed Suit
$P=$ purple shirt
WV S
$S=$ sandals

$$
\begin{gathered}
W=F \\
\downarrow+W \vee S \\
\cdot S=T \\
\downarrow+S \rightarrow P \\
\cdot P=T
\end{gathered}
$$

$$
\begin{aligned}
& \text { or } \\
& \searrow_{P}=F \\
& \\
& \downarrow+s \rightarrow P \\
& s=F \\
&+W \vee S \\
& W=T \\
& \searrow W \rightarrow(P \vee s)=F X
\end{aligned}
$$

SKIMMED
Sets
Set is a group of unordered objects (no repeats, order doesn't matter)
Metaphor: Folder on computer

- Contains files + other folders

T	\uparrow
objects	sets

- Could be empty

Roster list elements of set
Notation: $A=\{0,2,5\}$ means " A is the set containing the elements $0,2,5$."
for sets "element" "object"

E: $\quad 2 \in A$ means 2 is an element of A
\&: Prof. Watson $\$ S$ means Prof. Watson is not an element of S.

Sets in sets: $T=\{x, y,\{g, h\}, k\}$
an element of a set can be another set
Q: is $g \in T$? Is $\{g, h\} \in T$?
A) Yes. Yes.
B) Yes. No.
C) No. Yes.
D) No_{0} No.
elements of T are $x, y,\{g h\}, k$ *Also $\{x y\} \notin T$
S.KIMMEL

Famous Sets
$\phi=$ empty set $=\{ \}$
$\mathbb{N}=$ set of natural numbers $=\{1,2,3, \ldots\}$
\mathbb{Z} = set of integers $=\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$
$R=$ set of real numbers
$Q=$ Set of rational numbers (fractions
NOTE: In some books, $\mathbb{N}=\{0,1,2,3, \ldots\}$ starts at 0 .

Set Builder Notation
$B=\{f(x): P(x)\}=$ the set of x where $P(x)$ is $\{f(x): P(x)\} \begin{gathered}T \\ \uparrow \\ \text { predicate of each element }\end{gathered}$
$\begin{gathered}\text { function with } f(x) \text { applied to } \\ \text { of } x\end{gathered} x$

$$
\text { ex: } \begin{aligned}
A=\left\{x^{2}: x \text { is even }\right\} & =\left\{0^{2}, 2^{2}, 4^{2}, 6^{2}, \ldots\right\} \\
& =\{0,4,16,36, \ldots\} \\
A=\left\{(2 x)^{2}: x \in \mathbb{Z}\right\} & =\left\{(2 \cdot 0)^{2},(2 \cdot 1)^{2},(2 \cdot 2)^{2},-\right\} \\
& =\{0,4,16, \ldots\} \\
A & =\left\{x: x \in \mathbb{N} \wedge \frac{\sqrt{x}}{2} \in \mathbb{Z}\right\}
\end{aligned}
$$

