

2. Reason it out. If P is true and $P \rightarrow Q$ is true then Q must be true because otherwise $T \rightarrow F = F$.

Q :

Andre has a black suit and a tweed suit. He always wears his tweed suit OR he wears sandals. If he wears his tweed suit and purple shirt, he does not wear a bow tie. He never wears his tweed suit unless he also wears a purple shirt OR sandals. If he wears sandals, he also wears a purple shirt. Yesterday, Andre wore a bow time. What else did he wear?

.

Set Builder Notation

$$B = \begin{cases} f(x) : P(x) \\ T \\ function \\ of x \\ X \end{cases} = the set of x where P(x) is true, with $f(x)$ applied to the function x is each element x .

$$E(x) = \begin{cases} x^2 : x \text{ is even} \end{bmatrix} = \begin{cases} 0^2, 2^2, 4^2, 6^2, \dots \end{cases}$$

$$= \begin{cases} 0, 4, 16, 36, \dots \end{cases}$$$$

$$A = \{ (2x)^{2} : x \in \mathbb{Z} \} = \{ (2 \cdot 0)^{2}, (2 \cdot 1)^{2}, (2 \cdot 2)^{2}, - \}$$
$$= \{ 0, 4, 16, \dots \}$$
$$A = \{ X : x \in \mathbb{N} \land \frac{\sqrt{x}}{2} \in \mathbb{Z} \}$$