S.KIMMEL

Breadth-Fist-Search (BFS)
Remind why this works
Generic Search Alg:

1. Vis $=\{s\}$ // vis $=$ set of visited nodes
2. While $(\exists\{u, v\} \in E:(u \in$ wis $\wedge v \notin$ wis $))$:
3. Add v to vis

Big Question:
If multiple edges cross boundary between explored and unexplored, which to explore first?

Which new edge to explore?
Breadth-First Search Strategy:
explore all edges crossing current boundary, then look at new boundang \& explore

$$
\Longleftarrow \text { Breadth-First Search }
$$

SKIMMER
Input: Graph $G=(V, E)$, starting vertex $s \in V$
Output: List of found vertices:

- vis $[v]=$ false $\forall \quad v \in V \quad / /$ mark true when visited
- $A=\varnothing \quad / / A$ is a queue "First in first out" like a line
- Add s to A
- $\operatorname{vis}[s]=$ true
- while (A is not empty):
- Pop V from A
- for each edge $\{v, \omega\}$:
-if (vis $[\omega]=$ false):
- is $[\omega]=$ true
- Add w to A
at a dining hall. First in line is first to get food. Last in line is last to get food Add: put in line Pop: take out of line
S.KIMMEL
ex:

$\exp \left[\begin{array}{l|l}\hline \frac{S}{a} & T \\ \hline \frac{F}{b} & F \\ \hline \frac{c}{d} & F \\ \hline e & F\end{array}\right]$

SKIMMED
Q: What is the runtime of BFS using an adjacency list if $n=|V|$, $m=|E|, n_{s}=\#$ of vertices with paths from $s, \quad m_{s}=\#$ of edges on paths from s.
A.) $O\left(m_{s}\right)$
B) $O\left(n+m_{s}\right)$
C) $O\left(n_{s} \cdot m_{s}\right)$
D) $O\left(n+n_{s} m_{s}\right)$

SKIMMED
Explain: Why is runtime $O\left(n+m_{s}\right)$

- Runtime dominated by looking at edges
- Each edge can only be examined whin its adjoining vertex is popped. Each vertex can only show up in QUEUE one time. \Rightarrow Each edge is examined twice
- Finding next edge to visit takes constant time b/c use adjacency list.
$O\left(m_{s}\right)$ to do while 100 p Q edges connected to s $+$
Initialization: $O(n)$

Answer: $B \quad O\left(n+m_{s}\right)$

SKIMMED
Trees - connected graph with no cycle or
self

Tree
Not tree
Not tree
Not tree

Tree

SKIMMED

Rooted tree special vertex is called root

$$
\{u, v\} \in E \text {, if }
$$

u closer to

$$
\text { "root, } u \text { is }
$$

$$
\text { "parent" of } v \text {, }
$$ v is "child" of u.

SKIMMED
Q: Consider family tree tree. If I am the root, which nodes are child nodes of me?
A) My children
B) My Parents
c) Children \& Parents

def: An k-ary tree is a rooted tree where every node has at most k children.

Most Famous in Computer Science: Binary Tree 11

Applications:

