SKIMMEL

Q: Prove it takes n-1 breaks to reduce an n-square chocolate bar to n individual squares.

A: Let P(n) be the predicate " We will prove via strong induction that P(n) is true for $n \in \mathbb{N}$, $n \ge 1$.

Base case: When you have a 1-square chocolate bar, it requires 0 breaks to create 1 individual squares, so P(1) is true.

Inductive Case: We assume for show duction that P(i) is true for $| \leq i \leq k$. We will prove P(k+i) is true. Since $k+1\geq 1$, we can break the chocolate into two Pieces, one with a squares, and one with b squares, where a+b=k+1, and $| \leq a \leq k$, and $| \leq b \leq k$. Using our inductive assumption, it requires (a-i) breaks to separate the first piece and (b-i) breaks to separate the second. Adding up all the breaks, we have

(a-1) + (b-1) + 1 = a+b-1 = Ktotal breaks. Thus P(K+1) is true. If Therefore, by Strong induction, P(n) is true.

1. If n &1: return n

2. return 5.F(n-1)-6.F(n-2)

Let P(n) be the predicate F(n) returns 3^n-2^n . We will prove P(n) is true for all $n \ge 0$, using strong induction

Base case: There are two base cases: when the input is 0, we return 0. Since $3^{\circ}-2^{\circ}=1-1=0$, this is correct. When the input is 1, we return 1. Since $3^{\circ}-2^{\circ}=3-2=1$, this is correct.

Inductive step: We assume P(K) is true $\forall K \in \mathbb{Z}: 1 \leq K \leq k$.

No consider input k+1. Now $k+1 \geq 2$, so we return SF(k)-6F(k-1). Since $k \geq 1$, F(k) returns 3^k-2^k by inductive assumption.

Since $k-1 \geq 0$, and F(0) is correct by the base case, and larger values are true by inductive assumption, F(k-1) returns $3^{k-1}-2^{k-1}$. Thus the function returns

$$5(3^{k}-2^{k})-6(3^{k-1}-2^{k-1})$$

$$=5.3^{k}-5.2^{k}-2.3^{k}+3.2^{k}$$

$$=3^{k+1}-2^{k+1}$$

as desired.

Therefore, by strong induction, F(n) is correct.

SKIMMEL

Therefore, by strong induction, P(n) is true for NEN, N21.

Multiple Base Cases:

To prove P(h) may be only need to assume P(n-1) and P(h-2) are true. Then to prove P(3), need P(2) and P(1) true

Prove both in base case

Ex: The Fibonacci numbers are

1, 1, 2, 3, 5, 8 ...

50 F_{n=}F_{n-1}+F_{n-2}

S.KIMMEL
Proof by Example (be careful!)
Q: Which of the following could be proved using an example:
$A: A \times P(x)$ $B: -J \times P(x)$ $C: -A \times P(x)$
T: AXET - P(X)
for all x, and
one example can't prove
To show P(x) is not true for all x, just need to find one example
Can prove statements of the form
"There exist a (number such that) is true" We give an example
We give an example
"Not all numbers satisfy) We give a counter example

ex: Prove: not all students in this class were born in the same