Recurrence \& Time Complexity
When an algorithm has loops, we have tools for analyzing time complexity. What about recursive algorintus?

Factorial (n)

1. if $(n=1)$: return 1
2. else: return n. Factorial $(n-1)$
$T(n)$ is time complexity of Factorial (n)

cog.

$$
\begin{aligned}
& T(3)=D+T(2) \\
& T(3)=D+D+T(1)=2 D+C
\end{aligned}
$$

* Sometimes can have multiple initial conditions

$$
\begin{aligned}
& T(n)=T(n-1)+T(n-2) \\
& T(1)=A \quad T(2)=B \\
& T(3)=A+B
\end{aligned}
$$

\& if recursive relation depends on more than just $n-1$

SKIMMER
Solving a Recurrence Relation (iterative method)

$$
\begin{aligned}
T(n) & =D+\underbrace{T(n-1)} \\
& =D+D+T(n-2) \\
& =D+D+D+T(n-3)
\end{aligned}
$$

Looks like pattern is

$$
T(n)=k D+T(n-k)
$$

We know $T(1)=1$
$n-k=1 \Rightarrow n-1=k$ Plug in k :

$$
T(n)=(n-1) D+T(1)=n D+C-D=O(n)
$$

Not really rigorous... Instead:

1. Use this process to guess solution
2. Use (strong) induction to prove.

Well hopefully get back to this next later

SKIMMER
Another example...
Towers of Hanoi

Task: Move Tower from 1 to 3 without putting larger disk on top of smaller.

Q: How many moves do you need?
ex 1. $\&$

SKIMMER
Q: Which of the following recurrence relations is correct if $T(n)=$ of moves w / n disks
A) $T(1)=1 ; \quad T(n)=2+T(n-1)$
B) $T(2)=1 ; \quad T(n)=2 T(n-1)$
C) $T(1)=1, \quad T(n)=2 T(n-1)$
D) $T(1)=1, \quad T(n)=2 T(n-1)+1$

Answer D:

S.KIMMEL

Solve for $T(n)$ using iterative method

$$
\begin{aligned}
T(n)= & 2 T(n-1)+1 \\
= & 2(2 \cdot T(n-2)+1)+1=4 \cdot T(n-2)+2+1 \\
= & 4 \cdot(2 \cdot T(n-3)+1)+2=8 \cdot T(n-3)+4+2+1 \\
= & 8(2 \cdot T(n-4)+1)+4+2=16 \cdot T(n-4)+8+4+2+1 \\
& \vdots \\
= & 2^{k} T(n-k)+\sum_{j=1}^{k-1} 2^{j}
\end{aligned}
$$

Base case: $n-k=1 \Rightarrow k=n-1$

$$
\begin{aligned}
& =2^{n-1} T(1)+\sum_{j=0}^{n-2} 2^{j} \\
& =\underbrace{\sum_{j=0}^{n-1} 2^{j}=1+2+4+8+16+32+\cdots+2^{n-2}=\frac{2^{n}-1}{2-1}}_{\text {will prove in Ho }} \\
& =2^{n}-1=O\left(2^{n}\right)
\end{aligned}
$$

Worksheet!

Recurrence Page 6

