S.KIMMEL

· Other

SKIMMEL

Direct Proof
Direct Proof
Neverity used to prove implication like P→Q.
Structure:
Assume P. Explain, explain, ... explain. Therefore Q
"By definition...
Also used to prove universal implication:
$$\forall x (P(x) \rightarrow Q(x))$$

Structure:
Let x be [an arbitrary] element of the domain
Assume P(x)
Explain, explain, explain.
Therefore Q(x)

Q: Use a direct proof to show: For all a, b, c C Z, if
alb and blc then alc.
(alb means a divides b, that
$$\exists c c Z : a c = b$$
.
Let a, b, c c Z. Assume alb and blc. This means
 $\exists e, f \in Z$ such that $b = a c$ and $c = b f$. Then
 $c = b f = (a c) f = a (c f)$.

But this means alc, since C=ak, for k=ef, an integer.

-

Proof By Contrapositive
used to prove implication like
$$P \rightarrow Q$$
.
Recall: $P \rightarrow Q$ is logically $-Q \rightarrow -P$
equivalent to

Structure:
We prove the contrapositive
Assume
$$\neg Q$$
. Explain, explain, ... explain. Therefore $\neg P$
Also used to prove universal implication: $\forall x (P(x) \rightarrow Q(x))$
 x in some Domain
 x in some Domain
Let x be $\begin{bmatrix}any\\an arbitrary\end{bmatrix}$ element of the domain
We prove the contrapositive.
Assume $\neg Q(x)$
Explain, explain, explain.
Therefore $\neg P(x)$

• We prove the contrapositive. Let at Z. Suppose a is even. Then there exists $K \in \mathbb{Z}$: 2K = a. This means $a^2 = 4k^2$. Since Kis an integer, $4|a^2$.