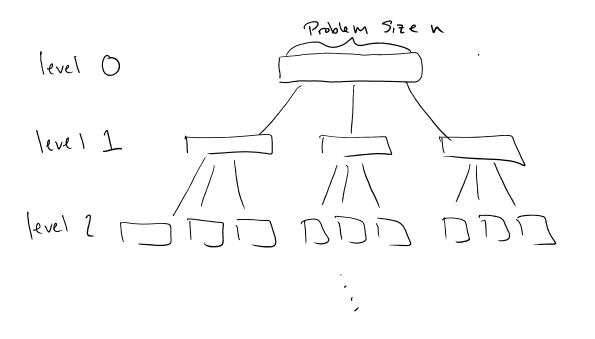
S.KIMMEL

Master Method
Way to solve certain recurrences

$$T(n) = a T(\frac{n}{b}) + O(n^d)$$
 a, b, d don't depend
 $T(n) \leq C$ for new on n
G: If $T(n)$ is runtime of an algorithm,
what are a, b, d in words?
A: a: # of recursive calls
b: factor by which problem shrinks in recursive call
d: characterizes extra work outside recursive call
Let's Add Up All Work ne Poblem size
 $e_X: a=3$
 $d=4$
 $O(n^2)$
 $O(n^2)$

S.KIMMEL

root of Master Method



level F D D D D Constant

Q. What is
$$F$$
 (in terms of a, b, d)?
 A) O (log_bn) B) O (log_bn) C) O (n^{log_bd}) D) O (b^{log_bn})
 A

Because at each level, problem size is divided by b. logon is number of times n can be divided by b before reaching a constant.

Proof of Master Method Page 4

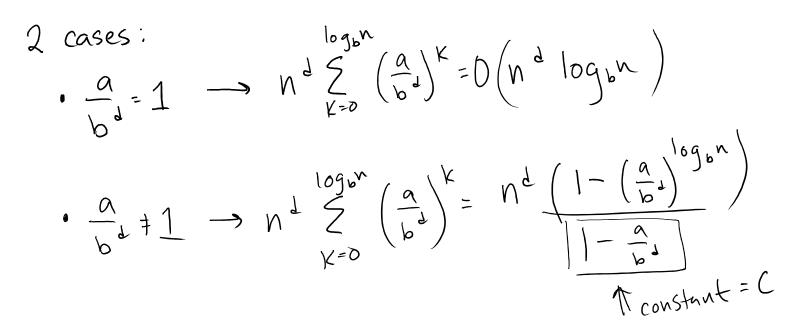
S.KIMMEL

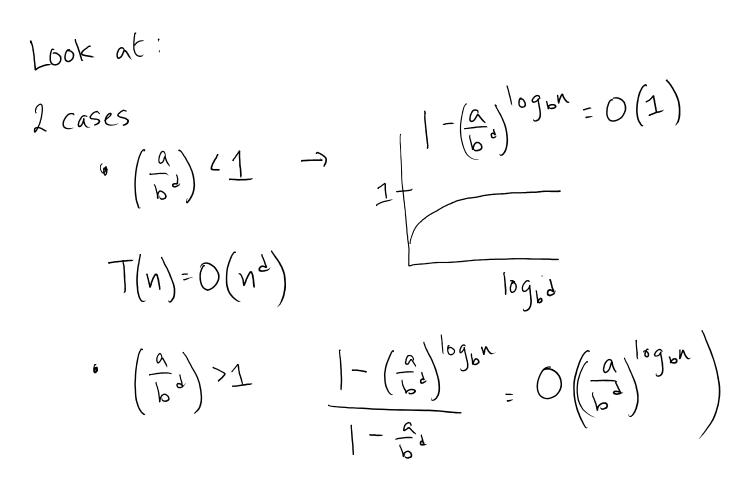
S.KIMEL
(a) What is the thill work done at level K (outside of recursive
calls & in terms of a, b, d)?
(a) subproblems at level K.
(b) level K subproblem size:
$$\frac{n}{b^{\times}}$$

($\frac{n}{b^{\times}}$)
Now we add up work done at all levels:
 $\sum_{k=0}^{\log_{b} n} (\frac{n}{b^{\times}})^{K} n^{k}$
 $K = 0$
($\frac{n}{b^{\times}}$)
($\frac{$

Geometric Series:

$$F = \begin{cases} F+1 & \text{if } r = 1 \\ \frac{1-r}{F^{+1}} & \text{otherwise} \\ 1-r \end{cases}$$
K=0





$$(a)^{\log_{n}} = \frac{n^{\log_{n}}}{b^{\log_{n}}} = \frac{n^{\log_{n}}}{b^{\log_{n}}} = \frac{n^{\log_{n}}}{b^{\log_{n}}} = \frac{n^{\log_{n}}}{(b^{\log_{n}}b)^{\log_{n}}}$$

$$= \frac{n^{\log_{n}}}{n^{d}}$$

$$T(n) = O(n^{d} (\frac{n^{\log_{n}}}{n^{d}})) = O(n^{\log_{n}})$$

$$T(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{d}\log_{n})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{d}\log_{n})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{\log_{n}})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{\log_{n}})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{\log_{n}})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{d}\log_{n})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{\log_{n}})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n^{\log_{n}}) = O(n^{\log_{n}})$$

$$C(n) = AT(\frac{n}{b}) + O(n^{d})$$

$$C(n) = AT(\frac{n}{b}) + O(n^$$