Math Foundations of Computer Science

Inductive Proof Recipe:

- Let P(n) be the predicate _____. We will prove, using induction on n, that P(n) is true for all n ≥ ____.
- Base Case: P(__) is true because ____
- Inductive Case: Let k ≥ _. Assume, for induction, that P(k) is true.
 Then <u>[a bunch of explanation and math here]</u>. Thus, P(k + 1) is true.
- Therefore, by induction, P(n) is true for all n ≥ __.
 Prove: 2ⁿ + 1 ≤ 3ⁿ for all integers n ≥ 1.
 Prove: Sum of first n odd numbers is n².

• Let P(n) be the predicate $2^n + 1 \le 3^n$. We will prove via induction that P(n) is true for all $n \ge 1$.

• P(1) is true because $2^1 + 1 = 3^1$.

Inductive Case

Let $k \ge 1$. Assume for induction that P(k) is true. This means $2^k + 1 \le 3^k$.

Multiplying both sides by 2 and then subtracting 1, we get $2^{k+1} + 1 \le 2 \times 3^k - 1$.

Now,
$$2 \times 3^k = 2 \times 3^k + 3^k - 3^k = 3^{k+1} - 3^k$$
. Plugging in:
 $2^{k+1} + 1 \le 3^{k+1} - 3^k - 1$.

Now since $-3^k - 1 \le 0$, we finally have $2^{k+1} + 1 \le 3^{k+1}$.

Thus P(k + 1) is true.

• Therefore, by induction on n, P(n) is true for all $n \ge 1$.