SKIMMER
Counting Infinite Sets
Given infinite time, a computer can do infinitely many thing... but can it do everything?... will answer in 301 . Today, tops.

$$
\left.\right\} \text { Same infinity? }
$$

Q: $|N|=|E| ?$
A) $|N|<|E|$
B) $|N|=|E|$
c) $|N|>|E|$

For sets $A, B, \quad|A|=|B| \Longleftrightarrow \exists \quad f: A \rightarrow B$ where f is bijective.
cg. $f(x)=2 x, \quad f: N \rightarrow E$

Another way to see bijection:

SKIMMED
Another way to see infinities are same
Hotel winfrite rooms, M occupied
New guy Everyone moves down, new gay gets room, all rooms occupred

Q: Show $|\mathbb{N}|=|\{x \in \mathbb{Z}: x>10\}| \quad f(x)=x+10$
Show $|\mathbb{N}|=|\mathbb{Z}|$
Show $\quad|\mathbb{N}|=\left|\left\{\frac{x}{y}: x, y \in \mathbb{Z},|x|<|y|\right\}\right|$

We call any set that has the same size as \mathbb{N}, Countably infinite
S.KIMMEL

Fact: $|\mathbb{N}|<|\{x \in \mathbb{R}: 0<x<1\}|$
We call sets that are
Proof uses Diagonalization: larger than $\mathbb{N} \frac{\text { uncountable }}{\text { inf in te }}$

1. QUUIET
2. STONE
3. OAFER
4. CLEAR
s. PHONE

Pf: Suppose for contradiction there is a bijection from \mathbb{N} to \mathbb{R}_{1}

$$
\begin{aligned}
& 1 \leftrightarrow 0 \cdot d_{11} d_{12} d_{13} \ldots . \quad d_{1 j}=j^{\text {th }} \text { decimal place } \\
& 2 \leftrightarrow 0 \cdot d_{21} d_{22} d_{23} \ldots \\
& 3 \longleftrightarrow 0 \cdot d_{31} d_{32} d_{33} \ldots
\end{aligned} \quad \text { of real } \quad 1
$$

$\sum_{\text {continue to infinity }}$

$$
\frac{1}{2}=0.500000 \ldots
$$

Now consider the number

$$
d=0 \cdot d_{1} d_{2} d_{3} d_{4} \cdots
$$

$$
d_{k}=\left\{\begin{array}{lll}
4 & \text { if } & d_{k k} \neq 4 \\
5 & \text { if } & d_{k k}=4
\end{array}\right.
$$

SKIMMER
$1 \leftrightarrow 0.19434 \ldots$
$2 \leftrightarrow 0.41198 \ldots$
$3 \leftrightarrow 0.974422 \ldots$$\quad \Rightarrow 0.445 \ldots$
d is a number in \mathbb{R}_{1}, but d is not in the list!. But we claimed all numbers in \mathbb{R}_{1} are on the list \rightarrow contradiction

If $\quad|A|=|\mathbb{N}|$, we call A countably infinite
If $|A|>|\mathbb{N}|$, we call A uncountable infinite
$Q:$ Let $F:\{f: \mathbb{N} \rightarrow\{0,1,2,3,4,5,6,7,8,9,10\}\}$
Show $|F|>|\mathbb{N}|$

Pf: Suppose for contradiction there is a bijection between F and \mathbb{N}
$1 \leftrightarrow f_{1}=f_{1}(1), f_{1}(2), f_{1}(3) \cdots \quad$ Can create a
$2 \leftrightarrow f_{2}=f_{2}(1), f_{2}(2), f_{2}(3) \cdots$ new function that differs at every position

