CS200 - Problem Set 2

Due: Monday, Feb. 26 to Canvas before class

Please read the sections of the syllabus on problem sets and honor code before starting this homework.

1. Don't forget induction! [11 points]

Prove that Algorithm 1 correctly searches an array of integers for a specific integer. Hint: let P(n) be the predicate: **Search** works correctly on an input array of size n. Hint: take a look at the previous week's solution to remind your self about the general strategy for algorithms.

Algorithm 1: Search(s, A)

Input : Integer s, and an array of integers A**Output:** Returns i such that A[i] = s, or -1, if s is not in the array. (The first element of A is at position 1.) 1 n = length of A;/* Base Case */ 2 if n == 1 then if A[1] == s then 3 4 return n; 5 else return -1; 6 end 7 /* Recursive case: */ 8 else if A[n] == s then 9 return n; 10 else 11 return Search(s, A[1:n-1]); $\mathbf{12}$

2. Set Builder to Roster Notation [2 point each]

The following sets are described in set builder notation. Describe each of them in roster notation, instead. The following symbols are used: \mathbb{Z} denotes the set of integers; \mathbb{R} denotes the set of real numbers; \mathbb{N} denotes the set of natural numbers, i.e., $\mathbb{N} = \{1, 2, ...\}$.

(a) $\{r : r \in \mathbb{R} \text{ and } r = r^2\}$

end

 $\begin{array}{c|c} 13 & \epsilon \\ 14 & end \end{array}$

(b) $\{n : n \in \mathbb{N} \text{ and } n > n^2\}$

- (c) $\{x : x \text{ is a letter in the word } accommodate\}$
- (d) $\{z^2 : z \in \mathbb{Z} \text{ and } 6 < z^3 < 160\}.$
- (e) $\{S \subseteq \{2, 4, 6, 8\} : S \cap \{2, 4\} \neq \emptyset \text{ and } |S| \text{ is even}\}$
- 3. Set builder notation [3 points each] Write each of the following sets using set-builder notation:
 - (a) $A = \{\dots, 1/8, 1/6, 1/4, 1/2, 2, 4, 6, 8\dots\}$
 - (b) $B = \{1, 2, 4, 8, 16, 32, \dots\}$
 - (c) $A \cap B$
 - (d) Express the set of all sets of 2 integers such that the two numbers in the set are non-zero, have opposite signs, and the magnitude of one of them is the square of the magnitude of the other.
- 4. Universal Set [2 points] Let U, the universal set, be the set of even integers from 2 to 12 inclusive, and let $A = \{4, 6, 7, 9\}, B = \{2, 3, 4, 5, 7\}$. What is $\overline{A B}$?
- 5. Set Operations [2 points each] Simplify each of the following expressions, where A is an arbitrary set, \emptyset is the empty set, and U is the universal set. Hint: each answer to (a)-(h) is one of A, U, or \emptyset . Just write down the answer: no proof needed, no steps need be shown.
 - (a) $A \cap U$
 - (b) $A \cap \emptyset$
 - (c) $A \cup U$
 - (d) $A \cup \emptyset$
 - (e) $A \cup A$
 - (f) $A \cap A$
 - · · · · ·
 - (g) $A \cup \overline{A}$
 - (h) $A \cap \overline{A}$
- 6. *Statements* **[3 points each]** For each of the following sentences, decide whether it is a statement, predicate, or neither, and explain why
 - (a) Call me Ishmael.
 - (b) The universe is supported on the back of a giant tortoise.
 - (c) x is a multiple of 7.
 - (d) The next sentence is true.
 - (e) The preceding sentence is false.
 - (f) The set \mathbb{Z} contains an infinite number of elements.

7. Statements [2 point each]

This problem has been postponed until next week's problem set!! If you've already done it, that is OK - but please include your solution for next week, too.

Simplify each of the following expressions, where p denotes a statement, and T and F are the Boolean constants *true* and *false*. Hint: each answer is one of p, T, or F. No proof needed, no steps need be shown.

- (a) $T \wedge p$
- (b) $F \wedge p$
- (c) $T \lor p$
- (d) $F \lor p$
- (e) $p \lor p$
- (f) $p \wedge p$
- (g) $p \lor \neg p$
- 8. How long did you spend on this homework?