
CS200 - Problem Set 10
Due: Monday, May. 7 to Canvas

1. Let G be the following graph, and let AG be an adjacency list representation of the G with
the adjacency list for each vertex in alphabetical order.

CS 200 Assignment 8 due: 1:30pm, 30 Apr 15

Reading

Graphs are covered in chapter 11 of Mathematics for Computer Science.

Homework

Use as much scratch paper as you like, but please limit your submission to the answers, along with any assumptions
you may have made in producing them.

At no point in this course should you need to resort to a calculator: an expression concisely describing how
you would calculate the answer is always su�cient.

1. Starting at node a, perform both breadth-first search and depth-first search on the following graph. Use
alphabetical order to determine the order in which to visit otherwise equivalent nodes.

a

b

c

d

e

f

g

h

i

j

k

l

For each graph-search algorithm, give the sequence of nodes visited. (20 points each)

2. How many di↵erent undirected graphs are there for a set of n vertices? That is, how many ways can you
assign edges among n vertices? You don’t need to prove it, but give significant intuition justifying your
answer. (20 points)

3. How many di↵erent directed graphs are there for a set of n vertices? Again, justify your answer. (20 points)

4. In class, I mentioned in passing that a connected, acyclic (undirected) graph with n vertices necessarily has
n � 1 edges (and, if you were paying attention, I gave a significant hint as to how one might prove it).
Prove it. (40 points)

Submission Instructions

Either typeset your solutions (ideally using LATEX) or handwrite them extremely legibly, and hand them in at the
beginning of class on 30 April.

1

Consider the following slight variation to breadth-first-search:

Algorithm 1: BFSish(A, s)
Input : Adjacency list A for a graph (V,E) and vertex s
Output: An integer array L of length |V |.
// Initialize array of explored vertices and array L

1 X[v] = 0 ∀v ∈ V ;
2 L[v] =∞ ∀v ∈ V ;
3 X[s] = 1;
4 L[s] = 0;
// Initialize Queue A

5 A = {};
6 A.add(s);
7 while A is not empty do
8 v = A.pop;
9 for each edge {v, w} do

10 if X[w] == 0 then
11 X[w] = 1;
12 A.add(w);
13 L[w] = L[v] + 1;

14 end

15 end

16 end
17 return L

1

(a) [6 points] In what order does BFSish(AG, a) explore the nodes of the graph G? (Re-
member lists of the adjacency list representation are in alphabetical order, so the for
loop in line 9 will look at vertices in alphabetical order.)

(b) [6 points] What are the values in the array L that is returned when BFSish(AG, a) is
implemented?

(c) [3 points] Considering your answer to part b, what does it seem like the algorithm is
doing? What is the meaning of L? Think about the relationship between a, b, and L[b].

2. Consider rolling 5 dice. Let Xi,j be an indicator random variable that takes value 1 if the ith
di has outcome j (and takes value 0 otherwise).

(a) [3 points] What is the sample space? What is its size?

(b) [3 points] Let X be the random variable that is the sum of all of the values shown on
the dice. If the outcome of the rolls is s = (4, 2, 4, 5, 1), what is X(s)? What is X3,4(s)?
What is X4,3(s)?

(c) [3 points] Write X in terms of a weighted sum of the variables Xi,j .

(d) [3 points] What is E[Xi,j]?

(e) [3 points] Use linearity of expectation to determine the average value of the sum of all
values shown on the dice.

3. Suppose a group of n people each order a different flavor of ice cream at an ice cream shop.
Suppose the server didn’t keep track of who ordered which flavor, and just handed the ice
cream out randomly.

(a) 3 points Let X a random variable that is the number of people who got handed the
correct flavor. Let Xi be the indicator random variable that takes value 1 if person i
gets the correct flavor (and 0 otherwise.) Write X in terms of a sum of the Xi.

(b) 6 points Use linearity of expectation to determine the average number of people who
get the correct flavor.

4. [6 points] Suppose you have an algorithm that has a time complexty T (r, l) given by the
recurrence relation:

T (1, l) = O(l)

T (r, l) = 2T (r/2, l) + O(rl) (1)

This recurrence relation is technically not one of the cases that the master method covers.
However, you can use the same strategy as the master method to get an expression for T (r, l)
in terms of r and l. Please use this strategy to find a big-O bound on T (r, l).

5. Suppose you have devised three different divide and conquer algorithms to solve the same
problem:

• Algorithm I: Divides the problem into three subproblems that are each a quarter of
the size of the original problem. It uses linear time to combine the solutions to the
subproblems.

2

• Algorithm II: Divides the problem into 2 subproblems that are each 2/3 the size of the
original problem. It uses constant time to combine the solutions to the subproblems.

• Algorithm III: Divides the problem into 9 subproblems that are each a third the size of
the original problem. It uses quadratic time to combine the solutions to the subproblems.

(a) [6 points] For each algorithm, give the asymptotic complexity using big-O notation.

(b) [6 points] State which of the algorithms you would use to solve an instance of this
problem.

6. [This problem will be part of an “optional” final problem set.] [6 points] Let A = N,
and B = {1, 2} × N. Show |A| = |B|.

7. How long did you spend on this homework?

3

